1. Kumar A. ECG-simplified. [place unknown]: LifeHugger;2010.
2. Kaplan NM. Systemic hypertension therapy. In : Braunwald E, editor. Braunwald's heart disease: a textbook of cardiovascular medicine. Philadelphia (PA): Saunders;1997.
3. Van Mieghem C, Sabbe M, Knockaert D. The clinical value of the ECG in noncardiac conditions. Chest. 2004; 125(4):1561–1576.
Article
4. American Health Association. Part 8: Stabilization of the patient with acute coronary syndromes. Circulation. 2005; 112:24_Suppl. IV.89–IV.110.
5. Li H, Yuan D, Wang Y, Cui D, Cao L. Arrhythmia classification based on multi-domain feature extraction for an ECG recognition system. Sensors (Basel). 2016; 16(10):E1744.
Article
6. Rodrigues J, Belo D, Gamboa H. Noise detection on ECG based on agglomerative clustering of morphological features. Comput Biol Med. 2017; 87:322–334.
Article
7. Sivaraks H, Ratanamahatana CA. Robust and accurate anomaly detection in ECG artifacts using time series motif discovery. Comput Math Methods Med. 2015; 2015:453214.
Article
8. Satija U, Ramkumar B, Manikandan MS. Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE J Biomed Health Inform. 2018; 22(3):722–732.
Article
9. Ercelebi E. Electrocardiogram signals de-noising using lifting-based discrete wavelet transform. Comput Biol Med. 2004; 34(6):479–493.
Article
10. Ho CY, Ling BW, Wong TP, Chan AY, Tam PK. Fuzzy multiwavelet denoising on ECG signal. Electron Lett. 2003; 39(16):1163–1164.
Article
11. Tikkanen PE. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol Cybern. 1999; 80(4):259–267.
Article
12. Iravanian S, Tung L. A novel algorithm for cardiac biosignal filtering based on filtered residue method. IEEE Trans Biomed Eng. 2002; 49(11):1310–1317.
Article
13. Leski JM. Robust weighted averaging. IEEE Trans Biomed Eng. 2002; 49(8):796–804.
14. Almenar V, Albiol A. A new adaptive scheme for ECG enhancement. Signal Process. 1999; 75(3):253–263.
Article
15. Barros AK, Mansour A, Ohnishi N. Removing artifacts from electrocardiographic signals using independent components analysis. Neurocomputing. 1998; 22(1-3):173–186.
Article
16. Blanco-Velasco M, Weng B, Barner KE. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput Biol Med. 2008; 38(1):1–13.
Article
17. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc Math Phys Eng Sci. 1998; 454(1971):903–995.
Article
18. Kabir MA, Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Process Control. 2012; 7(5):481–489.
Article
19. Karagiannis A, Constantinou P. Noise-assisted data processing with empirical mode decomposition in biomedical signals. IEEE Trans Inf Technol Biomed. 2011; 15(1):11–18.
Article
20. Xiong P, Wang H, Liu M, Zhou S, Hou Z, Liu X. ECG signal enhancement based on improved denoising autoencoder. Eng Appl Artif Intell. 2016; 52:194–202.
Article
21. Rahman MZ, Shaik RA, Reddy DR. Efficient and simplified adaptive noise cancelers for ECG sensor based remote health monitoring. IEEE Sens J. 2012; 12(3):566–573.
Article
22. Kim YG, Shin D, Park MY, Lee S, Jeon MS, Yoon D, et al. ECG-ViEW II, a freely accessible electrocardiogram database. PLoS One. 2017; 12(4):e0176222.
Article
23. Chung D, Choi J, Jang JH, Kim TY, Byun J, Park H, et al. Construction of an electrocardiogram database including 12 lead waveforms. Healthc Inform Res. 2018; 24(3):242–246.
Article
24. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016; 3:160035.
Article
25. Yoon D, Lee S, Kim TY, Ko J, Chung WY, Park RW. System for collecting biosignal data from multiple patient monitoring systems. Healthc Inform Res. 2017; 23(4):333–337.
Article
26. Reddy CK, Aggarwal CC. Healthcare data analytics. Boca Raton (FL): CRC Press;2015.
27. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [Internet]. Ithaca (NY): arXiv.org;2014. cited at 2019 Jul 10. Available from:
https://arxiv.org/pdf/1409.1556.pdf.
28. Huynh LN, Lee Y, Balan RK. Deepmon: mobile GPUbased deep learning framework for continuous vision applications. In : Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services; 2007 Jun 19-23; Niagara Falls, NY. p. 82–95.