Nat Prod Sci.  2019 Jun;25(2):172-180. 10.20307/nps.2019.25.2.172.

Thymol Rich Thymbra capitata Essential Oil Inhibits Quorum Sensing, Virulence and Biofilm Formation of Beta Lactamase Producing Pseudomonas aeruginosa

Affiliations
  • 1Department of Medical Laboratory Sciences, Mutah University, Mutah, Karak 61710, Jordan. haitham@mutah.edu.jo

Abstract

Infections with Pseudomonas aeruginosa are difficult to treat not only because it is often associated with multidrug-resistant infections but also it is able to form biofilm. The aim of this study was to evaluate the antibiofilm and anti-Quorum Sensing (QS) activities of Thymbra capitata essential oils (EOs) against Beta Lactamase (BL) producing P. aeruginosa and the reference strain P. aeruginosa 10145. GC/MS analysis showed that thymol (23.25%) is the most dominant compound in T. capitata EOs. The MICs of T. capitata EOs against P. aeruginosa (BL) and P. aeruginosa 10145 were 1.11%. At sub MIC (0.041, 0.014 and 0.0046%), the EOs of T. capitata remarkably inhibited the biofilm formation of both strains tested and complete inhibition of the biofilm formation was reported at 0.041%. The EOs of T. capitata were found to inhibit the swarming motility, aggregation ability and hydrophobic ability of P. aeruginosa (BL) and P. aeruginosa 10145. Interestingly, the EOs of T. capitata reduce the production of three secreted virulence factors that regulated by QS system including pyocyanin, rhamnolipids and LasA protease. The potent antibiofilm and anti-QS activities of T. capitata EOs can propose it as a new antibacterial agent to control pseudomonas infections.

Keyword

Pseudomonas aeruginosa; virulence; quorum sensing; biofilm; Thymbra capitata; essential oils

MeSH Terms

beta-Lactamases*
Biofilms*
Oils, Volatile
Pseudomonas aeruginosa*
Pseudomonas Infections
Pseudomonas*
Pyocyanine
Quorum Sensing*
Thymol*
Virulence Factors
Virulence*
Oils, Volatile
Pyocyanine
Thymol
Virulence Factors
beta-Lactamases

Figure

  • Fig. 1 The inhibition effect of different concentrations (0.041, 0.014 and 0.0046%) of T. capitata EOs on the formation of biofilms of P. aeruginosa (BL) and P. aeruginosa 10145 using crystal violet assay.

  • Fig. 2 The effect of different concentrations (0.041 and 0.014%) of T. capitata EOs on swarming motility of P. aeruginosa (BL) and P. aeruginosa 10145. A: control, B: treated with 0.014% of T. capitata EOs, C: treated with 0.041% of T. capitata EOs.

  • Fig. 3 Effects of different concentrations (0.041, 0.014 and 0.0046%) of T. capitata EOs on the aggregation ability of P. aeruginosa (BL) and P. aeruginosa 10145.

  • Fig. 4 Effect of different concentrations (0.041, 0.014 and 0.0046%) of T. capitata EOs on the hydrophobicity of P. aeruginosa (BL) and P. aeruginosa 10145 using hydrocarbon separation ratio (FPc).

  • Fig. 5 The effect of different concentrations (0.041, 0.014 and 0.0046%) of T. capitata EOs on pyocyanin production in P. aeruginosa (BL) and P. aeruginosa 10145.

  • Fig. 6 The effect of different concentrations (0.041, 0.014 and 0.0046%) of T. capitata EOs on rhamnolipidproduction in P. aeruginosa (BL) and P. aeruginosa 10145.

  • Fig. 7 staphylolytic protease activity of P. aeruginosa (BL) and P. aeruginosa 10145 treated with different concentrations (0.041, 0.014 and 0.0046%) of T. capitata EOs.


Reference

1. Driscoll JA, Brody SL, Kollef MH. Drugs. 2007; 67:351–368.
2. Sader HS, Huband MD, Castanheira M, Flamm RK. Antimicrob Agents Chemother. 2017; 61:e02252–e02216.
3. Oppenheimer-Shaanan Y, Steinberg N, Kolodkin-Gal I. Trends Microbiol. 2013; 21:594–601.
4. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Camara M. Chem Biol. 2007; 14:87–96.
5. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. Microbiol Mol Biol Res. 2012; 76:46–65.
6. Vu B, Chen M, Crawford RJ, Ivanova EP. Molecules. 2009; 14:2535–2554.
7. Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L. Sci World J. 2014; 2014:410423.
8. Jensen PO, Givskov M, Bjarnsholt T, Moser C. FEMS Immunol Med Microbiol. 2010; 59:292–305.
9. Grant SS, Hung DT. Virulence. 2013; 4:273–283.
10. Furiga A, Lajoie B, El Hage S, Baziard G, Roques C. Antimicrob Agents Chemother. 2015; 60:1676–1686.
11. Allen RC, Popat R, Diggle SP, Brown SP. Nat Rev Microbiol. 2014; 12:300–308.
12. Defoirdt T, Brackman G, Coenye T. Trends Microbiol. 2013; 21:619–624.
13. Isman MB. Crop Prot. 2000; 19:603–608.
14. Goren AC, Bilsel G, Bilsel M, Demir H, Kocaba EE. Z Naturforsch C. 2003; 58:687–690.
15. Carrasco A, Perez E, Cutillas AB, Martinez-Gutierrez R, Tomas V, Tudela J. Nat Prod Commun. 2016; 11:113–120.
16. El Abed N, Kaabi B, Smaali MI, Chabbouh M, Habibi K, Mejri M, Marzouki MN, Ben Hadj. Evid Based Complement Alternat Med. 2014; 2014:152487.
17. Faleiro L, Miguel G, Gomes S, Costa L, Venancio F, Teixeira A, Figueiredo AC, Barroso JG, Pedro LG. J Agric Food Chem. 2005; 53:8162–8168.
18. Benbelaid F, Khadir A, Abdoune MA, Bendahou M, Muselli A, Costa J. Asian Pac J Trop Biomed. 2014; 4:463–472.
19. Qaralleh HN, Abboud MM, Khleifat KM, Tarawneh KA, Althunibat OY. Pak J Pharm Sci. 2009; 22:247–251.
20. Althunibat OY, Qaralleh H, Al-Dalin SYA, Abboud M, Khleifat K, Majali IS, Aldal'in HKH, Rayyan WA, Jaafraa A. J Pure Appl Microbiol. 2016; 10:367–374.
21. Machado D, Gaspar C, Palmeira-de-Oliveira A, Cavaleiro C, Salgueiro L, Martinez-de-Oliveira J, Cerca N. Future Microbiol. 2017; 12:407–416.
22. Palmeira-de-Oliveira A, Gaspar C, Palmeira-de-Oliveira R, Silva-Dias A, Salgueiro L, Cavaleiro C, Pina-Vaz C, Martinez-de-Oliveira J, Queiroz JA, Rodrigues AG. J Ethnopharmacol. 2012; 140:379–383.
23. Salgueiro LR, Pinto E, Goncalves MJ, Pina-Vaz C, Cavaleiro C, Rodrigues AG, Palmeira A, Tavares C, Costa-de-Oliveira S, Martinez-de-Oliveira J. Planta Med. 2004; 70:572–575.
24. Pekmezovic M, Aleksic I, Barac A, Arsic-Arsenijevic V, Vasiljevic B, Nikodinovic-Runic J, Senerovic L. Pathog Dis. 2016; 74:102.
25. Peixoto LR, Rosalen PL, Ferreira GLS, Freires IA, de Carvalho FG, Castellano LR, de Castro RD. Arch Oral Biol. 2017; 73:179–185.
26. Tawaha KA, Hudaib MM. J Essent Oil Bear Plants. 2012; 15:988–996.
27. Qaralleh H, Idid S, Saad S, Susanti D, Taher M, Khleifat K. J Mycol Med. 2010; 20:315–320.
28. Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT, Kang J, Reza MA, Suh JW, Park SC. Sci Rep. 2017; 7:10618.
29. Krishnan T, Yin WF, Chan KG. Sensors. 2012; 12:4016–4030.
30. Shanks RMQ, Meehl MA, Brothers KM, Martinez RM, Donegan NP, Graber ML, Cheung AL, O'Toole GA. Infect Immun. 2008; 76:2469–2477.
31. Rosenberg M, Gutnick D, Rosenberg E. FEMS Microbiol Lett. 1980; 9:29–33.
32. Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, Lei D, Chen Y, Li Y, Kong J, Chen Y. PLoS One. 2017; 12:e0176883.
33. Andrejko M, Zdybicka-Barabas A, Janczarek M, Cytryska M. Acta Biochim Pol. 2013; 60:83–90.
34. Qaralleh HN. Bangladesh J Pharmacol. 2018; 13:280–286.
35. Fleisher Z, Fleisher A. J Essent Oil Res. 2002; 14:105–106.
36. Al Hafi M, El Beyrouthy M, Ouaini N, Stien D, Rutledge D, Chaillou S. Chem Biodivers. 2017; 14:e1600236.
37. Neves A, Marto J, Duarte A, Goncalves LM, Pinto P, Figueiredo AC, Ribeiro HM. Flavour Fragr. Flavour Fragr J. 2017; 32:392–402.
38. Džamić AM, Nikolić BJ, Giweli AA, Mitić-Ćulafić DS, Soković MD, Ristić MS, Knežević-Vukčević JB, Marin PD. J Appl Microbiol. 2015; 119:389–399.
39. Carson CF, Hammer KA. Thormar H, editor. Lipids and Essential oils as Antimicrobial Agents: Chemistry and Bioactivity of Essential Oils. Iceland: Wiley;2011. p. 203–238.
40. Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A. J Mycol Med. 2014; 24:e51–e56.
41. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Pharmaceuticals. 2013; 6:1451–1474.
42. Tapia-Rodriguez MR, Hernandez-Mendoza A, Gonzalez-Aguilar GA, Martinez-Tellez MA, Martins CM, Ayala-Zavala JF. Food Control. 2017; 75:255–261.
43. Tyfa A, Kunicka-Styczyńska A, Zabielska J. Acta Biochim Pol. 2015; 62:785–790.
44. Bonez PC, Rossi GG, Bandeira JR, Ramos AP, Mizdal CR, Agertt VA, Dalla Nora ESS, de Souza ME, dos Santos Alves CF, dos Santos FS, Gündel A, de AlmeidaVaucher R, Vianna Santos RC, de Campos MMA. Microb Pathog. 2017; 111:6–13.
45. Lai S, Tremblay J, Déziel E. Environ Microbiol. 2009; 11:126–136.
46. Lee JJ, Lee JH, Cho WK, Han JH, Ma JY. BMC Complement Altern Med. 2016; 16:253.
47. abed Soumya E, koraichi Saad I, Hassan L, Ghizlane Z, Hind M, Adnane R. African J Microbiol Res. 2011; 5:3229–3232.
48. Ran H, Hassett DJ, Lau GW. Proc Natl Acad Sci USA. 2003; 100:14315–14320.
49. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D, Grant GD. Toxins. 2016; 8:236.
50. Lau GW, Hassett DJ, Ran H, Kong F. Trends Mol Med. 2004; 10:599–606.
51. Caiazza NC, Shanks RM, O'Toole GA. J Bacteriol. 2005; 187:7351–7361.
52. Cowell BA, Twining SS, Hobden JA, Kwong MSF, Fleiszig SMJ. Microbiology. 2003; 149:2291–2299.
53. Ganesh PS, Rai RV. J Med Microbiol. 2016; 65:1528–1535.
54. Alvarez MV, Moreira MR, Ponce A. J Food Safety. 2012; 32:379–387.
55. Olivero JT, Pájaro NP, Stashenko E. Vitae. 2011; 18:77–82.
56. Olivero-Verbel J, Barreto-Maya A, Bertel-Sevilla A, Stashenko EE. Braz J Microbiol. 2014; 45:759–767.
57. Alvarez MV, Ortega-Ramirez LA, Gutierrez-Pacheco MM, Bernal-Mercado AT, Rodriguez-Garcia I, Gonzalez-Aguilar GA, Ponce A, Moreira M, del R, Roura SI, Ayala-Zavala JF. Front Microbiol. 2014; 5:699.
58. Sharifi A, Mohammadzadeh A, Zahraei Salehi T, Mahmoodi P. J Appl Microbiol. 2018; 124:379–388.
59. Ojo-Fakunle VT, Woertman J, Veldhuizen EJ, Burt SA. Planta Med. 2013; 79:SL51.
60. Burt SA, Ojo-Fakunle VT, Woertman J, Veldhuizen EJ. PLoS One. 2014; 9:e93414.
61. Myszka K, Schmidt MT, Majcher M, Juzwa W, Olkowicz M, Czaczyk K. Int Biodeterior Biodegradatiol. 2016; 114:252–259.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr