4. Ferrão J, Silva M, Gonçalves L, et al. Widening the spectrum of deletions and molecular mechanisms underlying alpha-thalassemia. Ann Hematol. 2017; 96:1921–1929.
Article
5. Russo R, Andolfo I, Manna F, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 2018; 93:672–682.
Article
6. Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Arztebl Int. 2011; 108:532–540.
7. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018; 391:155–167.
Article
8. Higgs DR, Weatherall DJ. The alpha thalassaemias. Cell Mol Life Sci. 2009; 66:1154–1162.
Article
9. Harteveld CL, Higgs DR. Alpha-thalassaemia. Orphanet J Rare Dis. 2010; 5:13.
10. Olivieri NF. The beta-thalassemias. N Engl J Med. 1999; 341:99–109.
11. Steinberg MH. Sickle cell anemia, the first molecular disease: overview of molecular etiology, pathophysiology, and therapeutic approaches. ScientificWorldJournal. 2008; 8:1295–1324.
Article
12. Viprakasit V, Ekwattanakit S. Clinical classification, screening and diagnosis for thalassemia. Hematol Oncol Clin North Am. 2018; 32:193–211.
Article
13. Chaitraiphop C, Sanchaisuriya K, Inthavong S, et al. Thalassemia screening using different automated blood cell counters: consideration of appropriate cutoff values. Clin Lab. 2016; 62:545–552.
Article
14. Chan LC, Ma SK, Chan AY, et al. Should we screen for globin gene mutations in blood samples with mean corpuscular volume (MCV) greater than 80 fL in areas with a high prevalence of thalassaemia? J Clin Pathol. 2001; 54:317–320.
Article
15. Viprakasit V, Limwongse C, Sukpanichnant S, et al. Problems in determining thalassemia carrier status in a program for prevention and control of severe thalassemia syndromes: a lesson from Thailand. Clin Chem Lab Med. 2013; 51:1605–1614.
Article
16. Clarke GM, Higgins TN. Laboratory investigation of hemoglobinopathies and thalassemias: review and update. Clin Chem. 2000; 46:1284–1290.
Article
17. Recommendations of a system for identifying abnormal hemoglobins. By the International Committee for Standardization in Hematology. Blood. 1978; 52:1065–1067.
18. Ryan K, Bain BJ, Worthington D, et al. Significant haemoglobinopathies: guidelines for screening and diagnosis. Br J Haematol. 2010; 149:35–49.
Article
19. Yun YM, Ji M, Ko DH, et al. Hb variants in Korea: effect on HbA1c using five routine methods. Clin Chem Lab Med. 2017; 55:1234–1242.
Article
20. Kim SY, Lee SH, Cho SI, et al. Molecular identification of the novel Gγ-β hybrid hemoglobin: Hb Gγ-β Ulsan (Gγ through 13; β from 19). Blood Cells Mol Dis. 2010; 45:276–279.
Article
22. Sayani FA, Kwiatkowski JL. Increasing prevalence of thalassemia in America: implications for primary care. Ann Med. 2015; 47:592–604.
Article
23. Anwar WA, Khyatti M, Hemminki K. Consanguinity and genetic diseases in North Africa and immigrants to Europe. Eur J Public Health. 2014; 24:Suppl 1. 57–63.
Article
24. Jahng J, Yoon KH. A family with a hemoglobin E variant including a Thai immigrant woman in Korea. Ann Lab Med. 2017; 37:71–73.
Article
25. Lee HS, Lee DY, Kim HJ, Lee IS. Two cases of alpha-thalassemia in Korean children from multicultural family. Clin Pediatr Hematol Oncol. 2011; 18:136–139.
26. Li DZ, Yang YD. Invasive prenatal diagnosis of fetal thalassemia. Best Pract Res Clin Obstet Gynaecol. 2017; 39:41–52.
Article
27. Seale TW, Rennert OM. Prenatal diagnosis of thalassemias and hemoglobinopathies. Ann Clin Lab Sci. 1980; 10:383–394.
28. Shang X, Xu X. Update in the genetics of thalassemia: what clinicians need to know. Best Pract Res Clin Obstet Gynaecol. 2017; 39:3–15.
Article
29. Sanguansermsri T, Thanaratanakorn P, Steger HF, et al. Prenatal diagnosis of hemoglobin Bart's hydrops fetalis by HPLC analysis of hemoglobin in fetal blood samples. Southeast Asian J Trop Med Public Health. 2001; 32:180–185.
30. Cousens NE, Gaff CL, Metcalfe SA, Delatycki MB. Carrier screening for beta-thalassaemia: a review of international practice. Eur J Hum Genet. 2010; 18:1077–1083.
Article
31. Langlois S, Ford JC, Chitayat D. CCMG Prenatal Diagnosis Committee. SOGC Genetics Committee. Carrier screening for thalassemia and hemoglobinopathies in Canada. J Obstet Gynaecol Can. 2008; 30:950–959.
Article
32. Li Y, Hahn S, Holzgreve W. Recent developments in the detection of fetal single gene differences in maternal plasma and the role of size fractionation. Ann N Y Acad Sci. 2006; 1092:285–292.
Article
33. Norwitz ER, Levy B. Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol. 2013; 6:48–62.
34. Papasavva T, van Ijcken WF, Kockx CE, et al. Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to β-thalassaemia. Eur J Hum Genet. 2013; 21:1403–1410.
Article
35. Li Y, Di Naro E, Vitucci A, et al. Size fractionation of cell-free DNA in maternal plasma improves the detection of a paternally inherited beta-thalassemia point mutation by MALDI-TOF mass spectrometry. Fetal Diagn Ther. 2009; 25:246–249.
Article
36. Breveglieri G, Travan A, D'Aversa E, et al. Postnatal and non-invasive prenatal detection of β-thalassemia mutations based on Taqman genotyping assays. PLoS One. 2017; 12:e0172756.
Article
37. Zafari M, Kosaryan M, Gill P, et al. Non-invasive prenatal diagnosis of β-thalassemia by detection of the cell-free fetal DNA in maternal circulation: a systematic review and meta-analysis. Ann Hematol. 2016; 95:1341–1350.
Article