1. Ritzwoller DP, Hassett MJ, Uno H, Cronin AM, Carroll NM, Hornbrook MC, et al. Development, validation, and dissemination of a breast cancer recurrence detection and timing informatics algorithm. J Natl Cancer Inst. 2018; 110:273–281.
Article
2. Teles RH, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: a bibliometric analysis. Int J Nanomedicine. 2018; 13:2321–2336.
Article
3. Darouich S, El Amine El Hadj O, Betaieb I, Goucha A, Dhiab T, Rahal K, et al. Triple negative breast cancer: a clinico-epidemiological and histopronostic study of 90 cases. Tunis Med. 2017; 95:37–44.
4. Lyu H, Wang S, Huang J, Wang B, He Z, Liu B. Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer. Cancer Lett. 2018; 420:97–108.
Article
5. Ghebeh H, Al-Khaldi S, Olabi S, Al-Dhfyan A, Al-Mohanna F, Barnawi R, et al. Fascin is involved in the chemotherapeutic resistance of breast cancer cells predominantly via the PI3K/Akt pathway. Br J Cancer. 2014; 111:1552–1561.
Article
6. Zhao W, Li X, Wang J, Wang C, Jia Y, Yuan S, et al. Decreasing Eukaryotic Initiation Factor 3C (EIF3C) suppresses proliferation and stimulates apoptosis in breast cancer cell lines through mammalian Target of Rapamycin (mTOR) pathway. Med Sci Monit. 2017; 23:4182–4191.
Article
7. Okabe-Kado J, Hagiwara-Watanabe Y, Niitsu N, Kasukabe T, Kaneko Y. NM23 downregulation and lysophosphatidic acid receptor EDG2/lpa1 upregulation during myeloid differentiation of human leukemia cells. Leuk Res. 2018; 66:39–48.
Article
8. Farkas Z, Fancsalszky L, Saskői É, Gráf A, Tárnok K, Mehta A, et al. The dosage-dependent effect exerted by the NM23-H1/H2 homolog NDK-1 on distal tip cell migration in
C. elegans
. Lab Invest. 2018; 98:182–189.
Article
9. Nakakido M, Tamura K, Chung S, Ueda K, Fujii R, Kiyotani K, et al. Phosphatidylinositol glycan anchor biosynthesis, class X containing complex promotes cancer cell proliferation through suppression of EHD2 and ZIC1, putative tumor suppressors. Int J Oncol. 2016; 49:868–876.
Article
10. Kim YJ, Sung M, Oh E, Vrancken MV, Song JY, Jung K, et al. Engrailed 1 overexpression as a potential prognostic marker in quintuple-negative breast cancer. Cancer Biol Ther. 2018; 19:335–345.
Article
11. Han W, Zhang C, Cao FY, Cao F, Jiang L, Ding HZ. Prognostic and clinicopathological value of NM23 expression in patients with breast cancer: a systematic review and meta-analysis. Curr Probl Cancer. 2017; 41:80–93.
Article
12. Vucemilo T, Skoko M, Sarcević B, Puljiz M, Alvir I, Turudić TP, et al. The level of serum pro-matrix metalloproteinase-2 as a prognostic factor in patients with invasive ductal breast cancer. Coll Antropol. 2014; 38:135–140.
13. Li F, Yin X, Luo X, Li HY, Su X, Wang XY, et al. Livin promotes progression of breast cancer through induction of epithelial-mesenchymal transition and activation of AKT signaling. Cell Signal. 2013; 25:1413–1422.
Article
14. Han W, Zhang C, Gao XJ, Wang HB, Chen F, Cao F, et al. Clinicopathologic and prognostic significance of the zinc finger of the cerebellum family in invasive breast cancer. J Breast Cancer. 2018; 21:51–61.
Article
15. Werner TA, Dizdar L, Nolten I, Riemer JC, Mersch S, Schütte SC, et al. Survivin and XIAP - two potential biological targets in follicular thyroid carcinoma. Sci Rep. 2017; 7:11383.
Article
16. Wang QP, Wang Y, Wang XD, Mo XM, Gu J, Lu ZY, et al. Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-κB expression in MCF-7/5-FU cells. Int J Biochem Cell Biol. 2013; 45:2036–2044.
Article
17. Jin Q, Feng L, Behrens C, Bekele BN, Wistuba II, Hong WK, et al. Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res. 2007; 67:11630–11639.
Article
18. Siddharth S, Das S, Nayak A, Kundu CN. SURVIVIN as a marker for quiescent-breast cancer stem cells-An intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clin Exp Metastasis. 2016; 33:661–675.
Article
19. Grzmil M, Rzymski T, Milani M, Harris AL, Capper RG, Saunders NJ, et al. An oncogenic role of eIF3e/INT6 in human breast cancer. Oncogene. 2010; 29:4080–4089.
Article
20. Zheng Q, Liu H, Ye J, Zhang H, Jia Z, Cao J. Nuclear distribution of eIF3g and its interacting nuclear proteins in breast cancer cells. Mol Med Rep. 2016; 13:2973–2980.
Article
21. Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, et al. A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis. 2014; 35:670–682.
Article
22. Wakefield A, Soukupova J, Montagne A, Ranger J, French R, Muller WJ, et al. Bcl3 selectively promotes metastasis of ERBB2-driven mammary tumors. Cancer Res. 2013; 73:745–755.
Article
23. Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem. 1994; 63:1880–1890.
Article
24. Li Y, Ma X, Wu X, Liu X, Liu L. Prognostic significance of survivin in breast cancer: meta-analysis. Breast J. 2014; 20:514–524.
Article
25. Stache C, Bils C, Fahlbusch R, Flitsch J, Buchfelder M, Stefanits H, et al. Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin. Neurosurg Focus. 2016; 41:E14.
Article
26. Yang YL, Ji C, Bi ZG, Lu CC, Wang R, Gu B, et al. Deguelin induces both apoptosis and autophagy in cultured head and neck squamous cell carcinoma cells. PLoS One. 2013; 8:e54736.
Article
27. Wilson JM, Kunnimalaiyaan S, Kunnimalaiyaan M, Gamblin TC. Inhibition of the AKT pathway in cholangiocarcinoma by MK2206 reduces cellular viability via induction of apoptosis. Cancer Cell Int. 2015; 15:13.
Article
28. Du L, Qian X, Dai C, Wang L, Huang D, Wang S, et al. Screening the molecular targets of ovarian cancer based on bioinformatics analysis. Tumori. 2015; 101:384–389.
Article
29. Qiang W, Zhao Y, Yang Q, Liu W, Guan H, Lv S, et al. ZIC1 is a putative tumor suppressor in thyroid cancer by modulating major signaling pathways and transcription factor FOXO3a. J Clin Endocrinol Metab. 2014; 99:E1163–72.
Article
30. Han W, Cao F, Gao XJ, Wang HB, Chen F, Cai SJ, et al. ZIC1 acts a tumor suppressor in breast cancer by targeting survivin. Int J Oncol. 2018; 53:937–948.
Article