Int J Stem Cells.  2019 Mar;12(1):162-169. 10.15283/ijsc18022.

Mesenchymal Stem Cells Decrease Tunnel Widening of Anterior Cruciate Ligament Reconstruction in Rabbit Model

Affiliations
  • 1Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea. seonbell@chonnam.ac.kr
  • 2Department of Pathology, Chonnam National University Medical School, Gwangju, Korea.

Abstract

BACKGROUND AND OBJECTIVES
The study investigated the effect of mesenchymal stem cells (MSCs) or fibrin glue on tunnel widening after anterior cruciate ligament (ACL) reconstruction compared with biologic free control without any biologic agents in the rabbit model.
METHODS AND RESULTS
ACL reconstructions were performed in 18 New Zealand white rabbits. All animals were divided into 3 groups according to the following reconstruction conditions and euthanized 12 weeks postoperatively for radiologic and histologic analyses. Thirty-two knees (control group=10; fibrin group=11; MSCs group=11) were finally evaluated. On micro-CT scan, mean femoral tunnel widening on oblique-sagittal image was 0.7±0.4 mm in the control group, 0.22±0.1 mm in the fibrin group and 0.25±0.1 mm in the MSCs group (p=0.001). Fibrin group and MSCs group showed significant differences compared with control group (p=0.002, 0.002). Mean tibial tunnel widening on oblique-sagittal image was 0.76±0.5 mm, 0.27±0.1 mm and 0.29±0.2 mm in the control, fibrin and MSCs group. Fibrin and MSCs group showed significant differences compared with control group (p=0.017, 0.014). Hounsfield Units (HU) were not significantly different between 3 groups (p>0.05). Histological analysis revealed that the architecture of graft in the MSCs group featured hypercellularity and compact collagen deposit.
CONCLUSION
ACL reconstruction using MSCs seemed decrease tunnel widening in rabbit model. Further study with large animals is required to confirm efficacy on decreasing tunnel widening.

Keyword

Anterior cruciate ligament; Mesenchymal stem cell; Tunnel widening; Rabbit model

MeSH Terms

Animals
Anterior Cruciate Ligament Reconstruction*
Anterior Cruciate Ligament*
Biological Factors
Collagen
Fibrin
Fibrin Tissue Adhesive
Knee
Mesenchymal Stromal Cells*
Rabbits
Transplants
Biological Factors
Collagen
Fibrin
Fibrin Tissue Adhesive

Figure

  • Fig. 1 Surgical process of ACL reconstruction in rabbit model. (A) The native ACL and extensor digitorum longus were identified after medial para-patellar arthrotomy. (B) The EDL tendon with 2 mm diameter and 25 mm length was harvested. (C, D) Femoral and Tibial tunnel were made using 2 mm drill at footprints of native ACL. (E) The harvested tendon was passed through the femoral and tibial tunnel and (F) was tethered with suture to the screw inserted into the bone.

  • Fig. 2 CT image measuring tunnel widening and Hounsfield units (HUs). The tunnel diameter (white arrow) were calculated on the oblique-coronal (A) and oblique-sagittal image (B) 2 mm distal from the femoral and tibial articular surface. On the same distance from articular surface, HUs were measured in regions of interest (1.5 mm×1.5 mm squared) in the tunnel (white square) and the cancellous bone around the tunnel (black square).

  • Fig. 3 (A) Gross photo and (B) oblique-sagittal section appearance showing reconstruced ACL on knee joint of rabbit.

  • Fig. 4 Photomicrographs of H & E staining in 12-week ACL reconstruction. In the control group (A, D), the smooth tendon-bone integration (firm attachment fo the graft to the bone) were observed. However, hypocellularity and less compacted collagen fiber was observed. In fibrin group (B, E), although partial tear of the graft has been shown, there are good cellularity and more compact collagen fiber. In the MSCs groups (C, F), the good architecture with hypercellularity and compacted collagen deposit was shown in compared with other groups.


Reference

References

1. Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med. 2008; 359:2135–2142. DOI: 10.1056/NEJMcp0804745. PMID: 19005197. PMCID: 3782299.
2. Levine JW, Kiapour AM, Quatman CE, Wordeman SC, Goel VK, Hewett TE, Demetropoulos CK. Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms. Am J Sports Med. 2013; 41:385–395. DOI: 10.1177/0363546512465167. PMID: 23144366. PMCID: 3935824.
Article
3. Sandberg R, Balkfors B, Nilsson B, Westlin N. Operative versus non-operative treatment of recent injuries to the ligaments of the knee. A prospective randomized study. J Bone Joint Surg Am. 1987; 69:1120–1126. DOI: 10.2106/00004623-198769080-00002. PMID: 3312204.
Article
4. Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med. 1990; 18:354–358. DOI: 10.1177/036354659001800404. PMID: 2206080.
Article
5. Strand T, Mølster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15–23 years postoperatively. Arch Orthop Trauma Surg. 2005; 125:217–221. DOI: 10.1007/s00402-004-0766-2. PMID: 15875231.
Article
6. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am. 1984; 66:344–352. DOI: 10.2106/00004623-198466030-00005. PMID: 6699049.
Article
7. Woo SL, Gomez MA, Seguchi Y, Endo CM, Akeson WH. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res. 1983; 1:22–29. DOI: 10.1002/jor.1100010104. PMID: 6679572.
Article
8. Melhorn JM, Henning CE. The relationship of the femoral attachment site to the isometric tracking of the anterior cruciate ligament graft. Am J Sports Med. 1987; 15:539–542. DOI: 10.1177/036354658701500603. PMID: 3425780.
Article
9. Muneta T, Yamamoto H, Sakai H, Ishibashi T, Furuya K. Relationship between changes in length and force in in vitro reconstructed anterior cruciate ligament. Am J Sports Med. 1993; 21:299–304. DOI: 10.1177/036354659302100222. PMID: 8465928.
Article
10. Kurosaka M, Yoshiya S, Andrish JT. A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med. 1987; 15:225–229. DOI: 10.1177/036354658701500306. PMID: 3303979.
Article
11. Nikolaou VS, Efstathopoulos N, Wredmark T. Hamstring tendons regeneration after ACL reconstruction: an overview. Knee Surg Sports Traumatol Arthrosc. 2007; 15:153–160. DOI: 10.1007/s00167-006-0160-4. PMID: 16917787.
Article
12. Gulotta LV, Rodeo SA. Biology of autograft and allograft healing in anterior cruciate ligament reconstruction. Clin Sports Med. 2007; 26:509–524. DOI: 10.1016/j.csm.2007.06.007. PMID: 17920950.
Article
13. Bissell L, Tibrewal S, Sahni V, Khan WS. Growth factors and platelet rich plasma in anterior cruciate ligament reconstruction. Curr Stem Cell Res Ther. 2015; 10:19–25. DOI: 10.2174/1574888X09666140710102002.
Article
14. Vavken P, Sadoghi P, Murray MM. The effect of platelet concentrates on graft maturation and graft-bone interface healing in anterior cruciate ligament reconstruction in human patients: a systematic review of controlled trials. Arthroscopy. 2011; 27:1573–1583. DOI: 10.1016/j.arthro.2011.06.003. PMID: 21862277. PMCID: 3206130.
Article
15. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF. Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med. 1999; 27:476–488. DOI: 10.1177/03635465990270041201. PMID: 10424218.
Article
16. Ouyang HW, Goh JC, Lee EH. Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med. 2004; 32:321–327. DOI: 10.1177/0095399703258682. PMID: 14977654.
Article
17. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy. 2004; 20:899–910. DOI: 10.1016/S0749-8063(04)00653-X. PMID: 15525922.
Article
18. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH. An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med. 2007; 35:962–971. DOI: 10.1177/0363546507300057. PMID: 17400750.
Article
19. Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng. 2004; 10:893–903. DOI: 10.1089/1076327041348428. PMID: 15265307.
Article
20. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Stem Cells Handb Exp Pharmacol. 2006; (174):249–282. DOI: 10.1007/3-540-31265-X_11.
Article
21. Oni OO. Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am. 1992; 74:633–634. DOI: 10.2106/00004623-199274040-00023. PMID: 1583062.
Article
22. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284:143–147. DOI: 10.1126/science.284.5411.143. PMID: 10102814.
Article
23. Awad HA, Boivin GP, Dressler MR, Smith FN, Young RG, Butler DL. Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res. 2003; 21:420–431. DOI: 10.1016/S0736-0266(02)00163-8. PMID: 12706014.
Article
24. Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc. 2007; 15:1219–1227. DOI: 10.1007/s00167-007-0385-x. PMID: 17687543.
Article
25. Atrah HI. Fibrin glue. BMJ. 1994; 308:933–934. DOI: 10.1136/bmj.308.6934.933. PMID: 8173397. PMCID: 2539755.
Article
26. Zazgyva AM, Gurzu S, Jung I, Nagy Ö, Mühlfay G, Pop TS. S53P4 bioactive glass and fibrin glue for the treatment of osteochondral lesions of the knee - a preliminary in vivo study in rabbits. Rom J Morphol Embryol. 2015; 56:1085–1090. PMID: 26662143.
27. Hao ZC, Wang SZ, Zhang XJ, Lu J. Stem cell therapy: a promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Prolif. 2016; 49:154–162. DOI: 10.1111/cpr.12242. PMID: 26929145.
Article
28. Bachy M, Sherifi I, Zadegan F, Petrover D, Petite H, Hannouche D. Anterior cruciate ligament surgery in the rabbit. J Orthop Surg Res. 2013; Aug. 19. [Epub]. DOI: 10.1186/1749-799X-8-27. PMID: 23957941. PMCID: 3765288.
Article
29. Gargiulo P, Helgason T, Reynisson PJ, Helgason B, Kern H, Mayr W, Ingvarsson P, Carraro U. Monitoring of muscle and bone recovery in spinal cord injury patients treated with electrical stimulation using three-dimensional imaging and segmentation techniques: methodological assessment. Artif Organs. 2011; 35:275–281. DOI: 10.1111/j.1525-1594.2011.01214.x. PMID: 21401674.
Article
30. Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng. 2013; 15:201–226. DOI: 10.1146/annurev-bioeng-071910-124656. PMID: 23642244. PMCID: 3925419.
Article
31. Pinczewski LA, Clingeleffer AJ, Otto DD, Bonar SF, Corry IS. Integration of hamstring tendon graft with bone in reconstruction of the anterior cruciate ligament. Arthroscopy. 1997; 13:641–643. DOI: 10.1016/S0749-8063(97)90194-8. PMID: 9343656.
Article
32. Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K. Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy. 1993; 9:394–405. DOI: 10.1016/S0749-8063(05)80313-5. PMID: 8216570.
Article
33. Goradia VK, Rochat MC, Kida M, Grana WA. Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J Sports Med. 2000; 28:40–46. DOI: 10.1177/03635465000280011901. PMID: 10653542.
Article
34. Blickenstaff KR, Grana WA, Egle D. Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med. 1997; 25:554–559. DOI: 10.1177/036354659702500420. PMID: 9240991.
Article
35. Grana WA, Egle DM, Mahnken R, Goodhart CW. An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med. 1994; 22:344–351. DOI: 10.1177/036354659402200309. PMID: 8037275.
Article
36. Webster KE, Chiu JJ, Feller JA. Impact of measurement error in the analysis of bone tunnel enlargement after anterior cruciate ligament reconstruction. Am J Sports Med. 2005; 33:1680–1687. DOI: 10.1177/0363546505275489. PMID: 16093539.
Article
37. Vadalà A, Iorio R, De Carli A, Argento G, Di Sanzo V, Conteduca F, Ferretti A. The effect of accelerated, brace free, rehabilitation on bone tunnel enlargement after ACL reconstruction using hamstring tendons: a CT study. Knee Surg Sports Traumatol Arthrosc. 2007; 15:365–371. DOI: 10.1007/s00167-006-0219-2. PMID: 17149647.
Article
38. Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH. The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med. 1997; 25:751–754. DOI: 10.1177/036354659702500605. PMID: 9397261.
Article
39. Goodrich LR, Chen AC, Werpy NM, Williams AA, Kisiday JD, Su AW, Cory E, Morley PS, McIlwraith CW, Sah RL, Chu CR. Addition of mesenchymal stem cells to autologous platelet-enhanced fibrin scaffolds in chondral defects: does it enhance repair? J Bone Joint Surg Am. 2016; 98:23–34. DOI: 10.2106/JBJS.O.00407. PMID: 26738900. PMCID: 4697360.
Article
Full Text Links
  • IJSC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr