1. Lemp MA. Report of the national eye institute/industry workshop on clinical trials in dry eyes. CLAO J. 1995; 21:221–232.
2. Srinivasan S, Thangavelu M, Zhang L, et al. iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci. 2012; 53:5052–5059.
Article
3. Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta. 2006; 369:17–28.
Article
4. Van Haeringen NJ. Clinical biochemistry of tears. Surv Ophthalmol. 1981; 26:84–96.
Article
5. Grus FH, Augustin AJ. Protein analysis methods in diagnosis of sicca syndrome. Ophthalmologe. 2000; 97:54–61.
6. Grus FH, Augustin AJ. Analysis of tear protein patterns by a neural network as a diagnostical tool for the detection of dry eyes. Electrophoresis. 1999; 20:875–880.
Article
7. Kijlstra A, Kuizenga A. Analysis and function of the human tear proteins. Adv Exp Med Biol. 1994; 350:299–308.
Article
8. Shigeyasu C, Yamada M, Akune Y. Influence of ophthalmic solutions on tear components. Cornea. 2016; 35:Suppl 1. S71–S77.
Article
9. Versura P, Nanni P, Bavelloni A, et al. Tear proteomics in evaporative dry eye disease. Eye (Lond). 2010; 24:1396–1402.
Article
10. Versura P, Bavelloni A, Grillini M, et al. Diagnostic performance of a tear protein panel in early dry eye. Mol Vis. 2013; 19:1247–1257.
11. Zhou L, Beuerman RW, Chan CM, et al. Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 2009; 8:4889–4905.
Article
12. de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006; 7:R72.
13. Dartt DA. Tear lipocalin: structure and function. Ocul Surf. 2011; 9:126–138.
Article
14. Lemp MA, Hamill JR Jr. Factors affecting tear film breakup in normal eyes. Arch Ophthalmol. 1973; 89:103–105.
Article
15. Bron AJ, Evans VE, Smith JA. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea. 2003; 22:640–650.
Article
16. Posa A, Bräuer L, Schicht M, et al. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat. 2013; 195:137–142.
Article
17. Fullard RJ, Kissner DM. Purification of the isoforms of tear specific prealbumin. Curr Eye Res. 1991; 10:613–628.
Article
18. Inada K. Studies of human tear proteins. 3. Distribution of specific tear prealbumin in lacrimal glands and other ocular adnexa. Jpn J Ophthalmol. 1984; 28:315–330.
19. Bläker M, Kock K, Ahlers C, et al. Molecular cloning of human von Ebner's gland protein, a member of the lipocalin superfamily highly expressed in lingual salivary glands. Biochim Biophys Acta. 1993; 1172:131–137.
Article
20. Redl B, Holzfeind P, Lottspeich F. cDNA cloning and sequencing reveals human tear prealbumin to be a member of the lipophilic-ligand carrier protein superfamily. J Biol Chem. 1992; 267:20282–20287.
Article
21. Glasgow BJ, Marshall G, Gasymov OK, et al. Tear lipocalins: potential lipid scavengers for the corneal surface. Invest Ophthalmol Vis Sci. 1999; 40:3100–3107.
22. Glasgow BJ, Abduragimov AR, Farahbakhsh ZT, et al. Tear lipocalins bind a broad array of lipid ligands. Curr Eye Res. 1995; 14:363–372.
Article
23. Gasymov OK, Abduragimov AR, Yusifov TN, Glasgow BJ. Binding studies of tear lipocalin: the role of the conserved tryptophan in maintaining structure, stability and ligand affinity. Biochim Biophys Acta. 1999; 1433:307–320.
Article
24. Nagyová B, Tiffany JM. Components responsible for the surface tension of human tears. Curr Eye Res. 1999; 19:4–11.
Article
25. Shigeyasu C, Hirano S, Akune Y, et al. Evaluation of the frequency of ophthalmic solution application: washout effects of topical saline application on tear components. Curr Eye Res. 2013; 38:722–728.
Article