Dement Neurocogn Disord.  2015 Sep;14(3):128-134. 10.12779/dnd.2015.14.3.128.

Blood Pressure and Heart Rate Variability in Alzheimer's Disease

Affiliations
  • 1Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea. neuronet@catholic.ac.kr

Abstract

BACKGROUND AND PURPOSE
Altered blood pressure (BP) and heart rate variations (HRVs) have been reported in Alzheimer's disease (AD). However, it is unclear how these two manifestations are associated with AD. Therefore, the objective of this study was to investigate BP and heart rate variability in AD compared to that in normal controls, patients with subjective memory impairment (SMI), and patients with mild cognitive impairment (MCI).
METHODS
Case-control comparisons were made among AD (n=37), MCI (n=24), SMI (n=17), and controls (n=25). All patients underwent clinical and neuropsychological assessments with 24-h ambulatory BP and Holter monitoring.
RESULTS
Patients with AD had higher pulse pressures than those in other groups. In addition, AD patients experienced blunted nocturnal BP dipping associated with declining cognitive status. AD patients also had larger ranges of HRV in parasympathetic domains compared to other groups, especially at night.
CONCLUSIONS
Our results suggest that diurnal sympathetic and parasympathetic cardiac variability were significantly disturbed in mild cholinesterase-naive AD patients. This may be an indirect sign of disturbed integrity to the sleep-wake cycle in mild AD.

Keyword

Alzheimer's disease; blood pressure; heart rate; sympathetic; parasympathetic; variation

MeSH Terms

Alzheimer Disease*
Blood Pressure*
Case-Control Studies
Electrocardiography, Ambulatory
Heart Rate*
Heart*
Humans
Memory
Mild Cognitive Impairment

Reference

1. Bondareff W, Mountjoy CQ, Roth M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology. 1982; 32:164–168.
Article
2. Chu CC, Tranel D, Damasio AR, Van Hoesen GW. The autonomic-related cortex: pathology in Alzheimer's disease. Cereb Cortex. 1997; 7:86–95.
Article
3. Royall DR, Gao JH, Kellogg DL Jr. Insular Alzheimer's disease pathology as a cause of "age-related" autonomic dysfunction and mortality in the non-demented elderly. Med Hypotheses. 2006; 67:747–758.
Article
4. Rüb U, Del Tredici K, Schultz C, Thal DR, Braak E, Braak H. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease-related cytoskeletal pathology. Acta Neuropathol. 2001; 101:555–564.
Article
5. Prinz PN, Christie C, Smallwood R, Vitaliano PP, Bokan J, Vitiello MV, et al. Circadian temperature variation in healthy aged and in Alzheimer's disease. J Gerontol. 1984; 39:30–35.
Article
6. Touitou Y, Reinberg A, Bogdan A, Auzéby A, Beck H, Touitou C. Age-related changes in both circadian and seasonal rhythms of rectal temperature with special reference to senile dementia of Alzheimer type. Gerontology. 1986; 32:110–118.
Article
7. Okawa M, Mishima K, Hishikawa Y, Hozumi S, Hori H, Takahashi K. Circadian rhythm disorders in sleep-waking and body temperature in elderly patients with dementia and their treatment. Sleep. 1991; 14:478–485.
Article
8. Otsuka A, Mikami H, Katahira K, Nakamoto Y, Minamitani K, Imaoka M, et al. Absence of nocturnal fall in blood pressure in elderly persons with Alzheimer-type dementia. J Am Geriatr Soc. 1990; 38:973–978.
Article
9. Toledo MA, Junqueira LF Jr. Cardiac autonomic modulation and cognitive status in Alzheimer's disease. Clin Auton Res. 2010; 20:11–17.
Article
10. Collins O, Dillon S, Finucane C, Lawlor B, Kenny RA. Parasympathetic autonomic dysfunction is common in mild cognitive impairment. Neurobiol Aging. 2012; 33:2324–2333.
Article
11. Aharon-Peretz J, Harel T, Revach M, Ben-Haim SA. Increased sympathetic and decreased parasympathetic cardiac innervation in patients with Alzheimer's disease. Arch Neurol. 1992; 49:919–922.
Article
12. Cugini P, Gori MC, Petrangeli CM, Tisei P, Giubilei F. Preserved blood pressure and heart rate circadian rhythm in early stage Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 1999; 54:M304–M308.
Article
13. Allan LM, Kerr SR, Ballard CG, Allen J, Murray A, McLaren AT, et al. Autonomic function assessed by heart rate variability is normal in Alzheimer's disease and vascular dementia. Dement Geriatr Cogn Disord. 2005; 19:140–144.
Article
14. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004; 256:183–194.
Article
15. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004; 256:240–246.
Article
16. Jessen F, Wiese B, Bachmann C, Eifflaender-Gorfer S, Haller F, Kölsch H, et al. Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch Gen Psychiatry. 2010; 67:414–422.
Article
17. Reisberg B, Shulman MB, Torossian C, Leng L, Zhu W. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimers Dement. 2010; 6:11–24.
Article
18. Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mösch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimers Dement. 2014; 10:76–83.
Article
19. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999; 56:303–308.
20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984; 34:939–944.
Article
21. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association;1994.
22. Kang YW, Na DL. Seoul Neuropsychological Screening Battery. Incheon: Human Brain Research & Consulting Co.;2003.
23. Abdulrab K, Heun R. Subjective Memory Impairment. A review of its definitions indicates the need for a comprehensive set of standardised and validated criteria. Eur Psychiatry. 2008; 23:321–330.
Article
24. Stewart R. Subjective cognitive impairment. Curr Opin Psychiatry. 2012; 25:445–450.
Article
25. Gać P, Sobieszczańska M. Effects of cigarette smoke on Holter ECG recordings in patients with arterial hypertension. Part 1: Time domain parameters of heart rate variability. Environ Toxicol Pharmacol. 2014; 37:404–413.
Article
26. Birkenhäger AM, van den Meiracker AH. Causes and consequences of a non-dipping blood pressure profile. Neth J Med. 2007; 65:127–131.
27. O'Brien E, Coats A, Owens P, Petrie J, Padfield PL, Littler WA, et al. Use and interpretation of ambulatory blood pressure monitoring: recommendations of the British hypertension society. BMJ. 2000; 320:1128–1134.
28. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2007; 28:1462–1536.
29. Oh YS, Kim JS, Yang DW, Koo JS, Kim YI, Jung HO, et al. Nighttime blood pressure and white matter hyperintensities in patients with Parkinson disease. Chronobiol Int. 2013; 30:811–817.
Article
30. Galluzzi S, Nicosia F, Geroldi C, Alicandri A, Bonetti M, Romanelli G, et al. Cardiac autonomic dysfunction is associated with white matter lesions in patients with mild cognitive impairment. J Gerontol A Biol Sci Med Sci. 2009; 64:1312–1315.
Article
31. Sierra C, de La Sierra A, Mercader J, Gómez-Angelats E, Urbano-Márquez A, Coca A. Silent cerebral white matter lesions in middle-aged essential hypertensive patients. J Hypertens. 2002; 20:519–524.
Article
32. Tohgi H, Chiba K, Kimura M. Twenty-four-hour variation of blood pressure in vascular dementia of the Binswanger type. Stroke. 1991; 22:603–608.
Article
33. Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995; 16:271–278. discussion 278-284
Article
34. Perry EK, Smith CJ, Court JA, Perry RH. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types. J Neural Transm Park Dis Dement Sect. 1990; 2:149–158.
Article
35. Femminella GD, Rengo G, Komici K, Iacotucci P, Petraglia L, Pagano G, et al. Autonomic dysfunction in Alzheimer's disease: tools for assessment and review of the literature. J Alzheimers Dis. 2014; 42:369–377.
Article
36. Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimer's disease. Biol Psychiatry. 1990; 27:563–572.
Article
37. Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW, et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens. 2003; 21:2251–2257.
Article
38. Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T, et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension. 2008; 52:1045–1050.
Article
39. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. 2004; 44:595–601.
40. Qiu C, Winblad B, Viitanen M, Fratiglioni L. Pulse pressure and risk of Alzheimer disease in persons aged 75 years and older: a community-based, longitudinal study. Stroke. 2003; 34:594–599.
Article
41. Lee AY, Jeong SH, Choi BH, Sohn EH, Chui H. Pulse pressure correlates with leukoaraiosis in Alzheimer disease. Arch Gerontol Geriatr. 2006; 42:157–166.
Article
42. Masuda Y, Kawamura A. Acetylcholinesterase inhibitor (donepezil hydrochloride) reduces heart rate variability. J Cardiovasc Pharmacol. 2003; 41:Suppl 1. S67–S71.
43. Pontecorvo MJ, Mintun MA. PET amyloid imaging as a tool for early diagnosis and identifying patients at risk for progression to Alzheimer's disease. Alzheimers Res Ther. 2011; 3:11.
Article
44. Witte MM, Trzepacz P, Case M, Yu P, Hochstetler H, Quinlivan M, et al. Association between clinical measures and florbetapir F18 PET neuroimaging in mild or moderate Alzheimer's disease dementia. J Neuropsychiatry Clin Neurosci. 2014; 26:214–220.
Article
Full Text Links
  • DND
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr