Dement Neurocogn Disord.  2017 Sep;16(3):78-82. 10.12779/dnd.2017.16.3.78.

Hypertension and Neuropsychiatric Symptoms in Patients with Drug-Naïve Alzheimer's Disease

Affiliations
  • 1Department of Neurology, Veterans Health Service Medical Center, Seoul, Korea. astro76@naver.com
  • 2Department of Nursing, Gyeongbuk College of Health, Gimcheon, Korea.

Abstract

BACKGROUND AND PURPOSE
Neuropsychiatric symptoms (NPS) such as anxiety, depression, and delusions affect up to 90% of all patients with Alzheimer's disease (AD). NPS is associated with significant caregiver burden and patient distress. Given the severe burden of NPS in AD, it is critical to know potential modifiable risk factors of NPS in AD. This study explores the association between hypertension and NPS in patients with drug-naïve AD.
METHODS
We reviewed medical records of 149 patients with AD with (n=80) and without (n=69) hypertension. NPS were assessed using the Korean version of Neuropsychiatric Inventory (K-NPI). Affective, psychotic, and behavior symptom clusters were assessed separately.
RESULTS
The total score of K-NPI was not significantly different between patients with AD with and without hypertension. Among K-NPI domains, scores of depression/dysphoria (p=0.045), anxiety (p=0.022), and apathy/indifference (p=0.037) were significantly higher in patients with AD with hypertension. Systolic blood pressure (BP) was associated with higher total K-NPI and affective symptom cluster scores. Diastolic BP was associated with affective symptom cluster scores.
CONCLUSIONS
Results suggest that hypertension increases risk of specific NPS in patients with AD. Among NPS, hypertension was associated with affective symptom cluster.

Keyword

hypertension; Alzheimer's disease; neuropsychiatric symptoms

MeSH Terms

Affective Symptoms
Alzheimer Disease*
Anxiety
Blood Pressure
Caregivers
Delusions
Depression
Humans
Hypertension*
Medical Records
Risk Factors

Reference

1. Fratiglioni L, De Ronchi D, Agüero-Torres H. Worldwide prevalence and incidence of dementia. Drugs Aging. 1999; 15:365–375.
Article
2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365:217–223.
Article
3. Seux ML, Thijs L, Forette F, Staessen JA, Birkenhäger WH, Bulpitt CJ, et al. Correlates of cognitive status of old patients with isolated systolic hypertension: the Syst-Eur Vascular Dementia Project. J Hypertens. 1998; 16:963–969.
Article
4. Morris MC, Scherr PA, Hebert LE, Bennett DA, Wilson RS, Glynn RJ, et al. Association between blood pressure and cognitive function in a biracial community population of older persons. Neuroepidemiology. 2002; 21:123–130.
Article
5. Waldstein SR, Giggey PP, Thayer JF, Zonderman AB. Nonlinear relations of blood pressure to cognitive function: the Baltimore Longitudinal Study of Aging. Hypertension. 2005; 45:374–379.
Article
6. Elias MF, Wolf PA, D'Agostino RB, Cobb J, White LR. Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study. Am J Epidemiol. 1993; 138:353–364.
Article
7. Kilander L, Nyman H, Boberg M, Hansson L, Lithell H. Hypertension is related to cognitive impairment: a 20-year follow-up of 999 men. Hypertension. 1998; 31:780–786.
8. Tzourio C, Dufouil C, Ducimetière P, Alpérovitch A. EVA Study Group. Epidemiology of Vascular Aging. Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. Neurology. 1999; 53:1948–1952.
Article
9. Knopman D, Boland LL, Mosley T, Howard G, Liao D, Szklo M, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001; 56:42–48.
Article
10. Treiber KA, Lyketsos CG, Corcoran C, Steinberg M, Norton M, Green RC, et al. Vascular factors and risk for neuropsychiatric symptoms in Alzheimer's disease: the Cache County Study. Int Psychogeriatr. 2008; 20:538–553.
Article
11. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984; 34:939–944.
Article
12. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12:189–198.
13. Kang Y, Na DL, Hahn SH. A validity study on the Korean minimental state examination (K-MMSE) in dementia patients. J Korean Neurol Assoc. 1997; 15:300–308.
14. Choi SH, Na DL, Lee BH, Hahm DS, Jeong JH, Yoon SJ, et al. Estimating the validity of the Korean version of expanded clinical dementia rating (CDR) scale. J Korean Neurol Assoc. 2001; 19:585–591.
15. Choi SH, Na DL, Kwon HM, Yoon SJ, Jeong JH, Ha CK. The Korean version of the neuropsychiatric inventory: a scoring tool for neuropsychiatric disturbance in dementia patients. J Korean Med Sci. 2000; 15:609–615.
Article
16. Jutkowitz E, MacLehose RF, Gaugler JE, Dowd B, Kuntz KM, Kane RL. Risk factors associated with cognitive, functional, and behavioral trajectories of newly diagnosed dementia patients. J Gerontol A Biol Sci Med Sci. 2017; 72:251–258.
Article
17. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005; 4:487–499.
Article
18. Steinberg M, Hess K, Corcoran C, Mielke MM, Norton M, Breitner J, et al. Vascular risk factors and neuropsychiatric symptoms in Alzheimer's disease: the Cache County Study. Int J Geriatr Psychiatry. 2014; 29:153–159.
Article
19. Lopez OL, Smith G, Becker JT, Meltzer CC, DeKosky ST. The psychotic phenomenon in probable Alzheimer's disease: a positron emission tomography study. J Neuropsychiatry Clin Neurosci. 2001; 13:50–55.
20. O'Brien J, Perry R, Barber R, Gholkar A, Thomas A. The association between white matter lesions on magnetic resonance imaging and noncognitive symptoms. Ann N Y Acad Sci. 2000; 903:482–489.
21. Faraco G, Iadecola C. Hypertension: a harbinger of stroke and dementia. Hypertension. 2013; 62:810–817.
22. Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ. 2001; 322:1447–1451.
Article
23. Luchsinger JA, Gustafson DR. Adiposity, type 2 diabetes, and Alzheimer's disease. J Alzheimers Dis. 2009; 16:693–704.
Article
24. Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, et al. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology. 2010; 75:1195–1202.
Article
25. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci. 2011; 12:723–738.
Article
26. Qiu L, Ng G, Tan EK, Liao P, Kandiah N, Zeng L. Chronic cerebral hypoperfusion enhances Tau hyperphosphorylation and reduces autophagy in Alzheimer's disease mice. Sci Rep. 2016; 6:23964.
Article
27. Bennett SA, Pappas BA, Stevens WD, Davidson CM, Fortin T, Chen J. Cleavage of amyloid precursor protein elicited by chronic cerebral hypoperfusion. Neurobiol Aging. 2000; 21:207–214.
Article
28. Koike MA, Green KN, Blurton-Jones M, Laferla FM. Oligemic hypoperfusion differentially affects tau and amyloid-β. Am J Pathol. 2010; 177:300–310.
Article
29. Wang X, Xing A, Xu C, Cai Q, Liu H, Li L. Cerebrovascular hypoperfusion induces spatial memory impairment, synaptic changes, and amyloid-β oligomerization in rats. J Alzheimers Dis. 2010; 21:813–822.
Article
Full Text Links
  • DND
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr