Kosin Med J.  2018 Dec;33(3):337-346. 10.7180/kmj.2018.33.3.337.

A study of the effectiveness of using the serum procalcitonin level as a predictive test for bacteremia in acute pyelonephritis

Affiliations
  • 1Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea. parkbong31@naver.com
  • 2Department of Neurology, Inje University Haeundae Paik Hospital, Busan, Korea.
  • 3Department of Internal Medicine, Keimyung University, Dosan medical center, Daegu, Korea.

Abstract


OBJECTIVES
Serum procalcitonin (PCT) is a specific biomarker that rises after bacterial infection, and levels of PCT are known to correlate with the severity and mortality of patients with pneumonia and sepsis. However, the usefulness of PCT levels in acute pyelonephritis is unknown. This study aimed to evaluate the effectiveness of using the PCT level as a predictive test for bacteremia in acute pyelonephritis.
METHODS
Between January 2012 and June 2013, 140 patients diagnosed with acute pyelonephritis were admitted to Haeundae Paik Hospital. Serum PCT, C-reactive protein (CRP), and white blood cell (WBC) levels at pre- and post- treatment were measured. Blood and urine cultures were obtained from all patients. The levels of PCT, CRP, and WBCs were each compared between the blood culture-positive and blood culture-negative groups to assess their effectiveness in predicting bacteremia.
RESULTS
Pre-treatment PCT level was 0.77 ng/mL (95% CI: 0.42-1.60 ng/mL) in the blood culture-negative group and 4.89 ng/mL (95% CI: 2.88-9.04 ng/mL) in the blood culture-positive group, and the increase between the two groups was statistically significant. The area under the receiver operating characteristic curve of PCT level for prediction of bacteremia was 0.728. A cut-off value of 1.23 ng/mL indicated a sensitivity of 79.0 % and specificity of 60.0 % for PCT level.
CONCLUSIONS
Serum PCT level is a useful predictive test for bacteremia in acute pyelonephritis. Through the early detection of bacteremia, serum PCT level can help estimate the prognosis and predict complications such as sepsis.

Keyword

Bacteremia; Procalcitonin; Pyelonephritis

MeSH Terms

Bacteremia*
Bacterial Infections
C-Reactive Protein
Humans
Leukocytes
Mortality
Pneumonia
Prognosis
Pyelonephritis*
ROC Curve
Sensitivity and Specificity
Sepsis
C-Reactive Protein

Figure

  • Fig. 1 ROC curves of procalcitonin, C-reactive protein for prediction of bacteremia Procal, procalcitonin: CRP, C-reactive protein: ROC, receiver operating characteristic


Reference

1. Paolucci M, Landini MP, Sambri V. Conventional and molecular techniques for the early diagnosis of bacteraemia. Int J Antimicrob Agents. 2010; 36:S6–S16.
Article
2. Karzai W, Oberhoffer M, Meier-Hellmann A, Reinhart K. Procalcitonin—a new indicator of the systemic response to severe infections. Infection. 1997; 25:329–334.
Article
3. Müller B, White JC, Nylén ES, Becker KL, Habener JF. Ubiquitous Expression of the Calcitonin-I Gene in Multiple Tissues in Response to Sepsis. J Clin Endocrinol Metab. 2001; 86:396–404.
Article
4. Ugarte H, Silva E, Mercan D, De Mendonça A, Vincent JL. Procalcitonin used as a marker of infection in the intensive care unit. Crit Care Med. 1999; 27:498–504.
Article
5. Viallon A, Zeni F, Lambert C, Pozzetto B, Tardy B, Venet C, et al. High sensitivity and specificity of serum procalcitonin levels in adults with bacterial meningitis. Clin Infect Dis. 1999; 28:1313–1316.
Article
6. Redl H, Schlag G, Tögel E, Assicot M, Bohuon C. Procalcitonin release patterns in a baboon model of trauma and sepsis: relationship to cytokines and neopterin. Crit Care Med. 2000; 28:3659–3663.
Article
7. Sugimoto K, Adomi S, Koike H, Esa A. Procalcitonin as an indicator of urosepsis. Res Rep Urol. 2013; 5:77–80.
Article
8. Dandona P, Nix D, Wilson MF, Aljada A, Love J, Assicot M, Bohuon C. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab. 1994; 79:1605–1608.
Article
9. Krüger S, Ewig S, Marre R, Papassotiriou J, Richter K, von Baum H, et al. Procalcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J. 2008; 31:349–355.
Article
10. Meisner M, Tschaikowsky K, Palmaers T, Schmidt J. Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care. 1999; 3:45–50.
11. Giamarellos-Bourboulis EJ, Grecka P, Poulakou G, Anargyrou K, Katsilambros N, Giamarellou H. Assessment of procalcitonin as a diagnostic marker of underlying infection in patients with febrile neutropenia. Clin Infect Dis. 2001; 32:1718–1725.
Article
12. Seligman R, Meisner M, Lisboa TC, Hertz FT, Filippin TB, Fachel JM, et al. Decreases in procalcitonin and C-reactive protein are strong predictors of survival in ventilator-associated pneumonia. Crit Care. 2006; 10:R125.
13. Schuetz P, Albrich W, Mueller B. Procalcitonin for diagnosis of infection and guide to antibiotic decisions: past, present and future. BMC Med. 2011; 9:107.
Article
14. Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA. 2009; 302:1059–1066.
Article
15. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004; 363:600–607.
Article
16. Peduzzi P, Shatney C, Sheagren J, Sprung C. Predictors of bacteremia and gram-negative bacteremia in patients with sepsis. The Veterans Affairs Systemic Sepsis Cooperative Study Group. Arch Intern Med. 1992; 152:529–535.
Article
17. Jaimes F, Arango C, Ruiz G, Cuervo J, Botero J, Velez G, et al. Predicting bacteremia at the bedside. Clin Infect Dis. 2004; 38:357–362.
Article
18. Yoshida T, Tsushima K, Tsuchiya A, Nishikawa N, Shirahata K, Kaneko K, et al. Risk factors for hospital-acquired bacteremia. Intern Med. 2005; 44:1157–1162.
Article
19. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, et al. Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA. 1997; 278:234–240.
Article
20. Groselj-Grenc M, Ihan A, Pavcnik-Arnol M, Kopitar AN, Gmeiner-Stopar T, Derganc M. Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensive Care Med. 2009; 35:1950–1958.
Article
21. Selberg O, Hecker H, Martin M, Klos A, Bautsch W, Köhl J. Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med. 2000; 28:2793–2798.
Article
22. Mimoz O, Benoist JF, Edouard AR, Assicot M, Bohuon C, Samii K. Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med. 1998; 24:185–188.
Article
23. Carsin H, Assicot M, Feger F, Roy O, Pennacino I, Le Bever H, et al. Evolution and significance of circulating procalcitonin levels compared with IL-6, TNFα and endotoxin levels early after thermal injury. Burns. 1997; 23:218–224.
Article
Full Text Links
  • KMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr