Asian Spine J.  2018 Aug;12(4):601-610. 10.31616/asj.2018.12.4.601.

In Vitro Biomechanical and Fluoroscopic Study of a Continuously Expandable Interbody Spacer Concerning Its Role in Insertion Force and Segmental Kinematics

Affiliations
  • 1Mount Nittany Medical Center, State College, PA, USA.
  • 2Musculoskeletal Education and Research Center, A Division of Globus Medical Inc., Audubon, PA, USA. jharris@globusmedical.com

Abstract

STUDY DESIGN: In vitro cadaveric study. PURPOSE: To compare biomechanical performance, trial and implant insertion, and disc distraction during implant placement, when two interbody devices, an in situ continuously expandable spacer (CES) and a traditional static spacer (SS), were used for transforaminal lumbar interbody fusion. OVERVIEW OF LITERATURE: Severe degenerative disc diseases necessitate surgical management via large spacers to increase the disc space for implants. Next-generation interbody devices that expand in situ minimize insertion forces, optimize fit between vertebral endplates, and limit nerve root retraction. However, the literature lacks characterization of insertion forces as well as details on other parameters of expandable and static spacers.
METHODS
Ten cadaveric segments (L5-S1) were divided into two groups (n=5) and implanted with either CES or SS. Each specimen experienced unconstrained pure moment of ±6 Nm in flexion-extension, lateral bending, and axial rotation to assess the contribution of CES and SS implants in biomechanical performance. Radiographic analysis was performed during trial and implant insertion to measure distraction during spacer insertion at the posterior, central, and anterior disc regions. Pressure sensors measured the force of trial and implant insertion.
RESULTS
Biomechanical analysis showed no significant differences between CES and SS in all planes of motion. A total 2.6±0.9 strikes were required for expandable spacer trials insertion and 2.6±0.5 strikes for CES insertion. A total of 8.4±3.8 strikes were required to insert SS trials and 4.2±1.6 strikes for SS insertion. The total force per surgery was 330 N for CES and 635 N for SS. Fluoroscopic analysis revealed a significant reduction in distraction during implant insertion at the posterior and anterior disc regions (CES, 0.58 and 0.14 mm; SS, 1.04 and 0.78 mm, respectively).
CONCLUSIONS
Results from the three study arms reveal the potential use of expandable spacers. During implant insertion, CESs provided similar stability, required less insertion force, and significantly reduced over-distraction of the annulus compared with SS.

Keyword

Intervertebral disc degeneration; Lumbar region; Range of motion; Equipment design; Annulus fibrosus

MeSH Terms

Arm
Biomechanical Phenomena*
Cadaver
Equipment Design
In Vitro Techniques*
Intervertebral Disc Degeneration
Lumbosacral Region
Range of Motion, Articular
Strikes, Employee
Full Text Links
  • ASJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr