1. Zhou L, Friedman C, Parsons S, Hripcsak G. System architecture for temporal information extraction, representation and reasoning in clinical narrative reports. AMIA Annu Symp Proc. 2005; 2005:869–873.
2. Combi C, Shahar Y. Temporal reasoning and temporal data maintenance in medicine: issues and challenges. Comput Biol Med. 1997; 27(5):353–368.
Article
3. Madkour M, Benhaddou D, Tao C. Temporal data representation, normalization, extraction, and reasoning: A review from clinical domain. Comput Methods Programs Biomed. 2016; 128:52–68.
Article
4. Verhagen M, Gaizauskas R, Schilder F, Hepple M, Katz G, Pustejovsky J. SemEval-2007 task 15: TempEval temporal relation identification. In : 4th International Workshop on Semantic Evaluations; 2007 Jun 23–24; Prague, Czech Republic. p. 75–80.
5. Bramsen PJ. Doing time: inducing temporal graphs [dissertation]. Cambridge (MA): Massachusetts Institute of Technology;2006.
6. Zhou L, Parsons S, Hripcsak G. The evaluation of a temporal reasoning system in processing clinical discharge summaries. J Am Med Inform Assoc. 2008; 15(1):99–106.
Article
7. Pustejovsky J, Stubbs A. Increasing informativeness in temporal annotation. In : 5th Linguistic Annotation Workshop; 2011 Jun 23–24; Portland, OR. p. 152–160.
8. Dligach D, Miller T, Lin C, Bethard S, Savova G. Neural temporal relation extraction. In : 15th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2, Short Papers); 2017 Apr 3–7; Valencia, Spain. p. 746–751.
9. Tao C, Solbrig HR, Sharma DK, Wei WQ, Savova GK, Chute CG. Time-oriented question answering from clinical narratives using semantic-web techniques. In : Patel-Schneider PF, Pan Y, Hitzler P, Mika P, Zhang L, Pan JZ, Horrocks I, editors. International Semantic Web Conference. Heidelberg: Springer;2010. p. 241–256.
10. Park H, Choi J. V-Model: a new perspective for EHR-based phenotyping. BMC Med Inform Decis Mak. 2014; 14:90.
Article
11. Jung H, Allen J, Blaylock N, De Beaumont W, Galescu L, Swift M. Building timelines from narrative clinical records: initial results based-on deep natural language understanding. In : BioNLP 2011 Workshop; 2011 Jun 23–24; Portland, OR. p. 146–154.
12. Monroe M, Lan R, Lee H, Plaisant C, Shneiderman B. Temporal event sequence simplification. IEEE Trans Vis Comput Graph. 2013; 19(12):2227–2236.
Article
13. Angelova G, Boytcheva S. Towards temporal segmentation of patient history in discharge letters. In : Workshop on Biomedical Natural Language Processing; 2011 Sep 15–16; Hissar, Bulgaria. p. 49–54.
14. Bramsen P, Deshpande P, Lee YK, Barzilay R. Finding temporal order in discharge summaries. AMIA Annu Symp Proc. 2006; 2006:81–85.
15. Nakhimovsky A, Rapaport WJ. Discontinuities in narratives. In : 12th Conference on Computational Linguistics; 1988 Aug 22–27; Budapest, Hungary. p. 465–470.
16. Allen J. Natural language understanding. 2nd ed. Redwood City (CA): Pearson;1995.
17. Nakhimovsky A. Aspect, aspectual class, and the temporal structure of narrative. Comput Linguist. 1988; 14(2):29–43.
18. Grosz BJ, Sidner CL. Attention, intentions, and the structure of discourse. Comput Linguist. 1986; 12(3):175–204.
19. Anderson A, Garrod SC, Sanford AJ. The accessibility of pronominal antecedents as a function of episode shifts in narrative text. Q J Exp Psychol A. 1983; 35(3):427–440.
Article
20. Maybury MT. Using discourse focus, temporal focus, and spatial focus to generate multisentential text. In : 5th International Workshop on Natural Language Generation; 1990 Jun 3–6; Dawson, PA. p. 70–78.
21. Passonneau RJ, Litman DJ. Empirical analysis of three dimensions of spoken discourse: segmentation, coherence, and linguistic devices. In : Hovy EH, Scott DR, editors. Computational and conversational discourse. Heidelberg: Springer;1996. p. 161–194.
22. Marcu D. The theory and practice of discourse parsing and summarization. Cambridge (MA): MIT Press;2000.
23. Beeferman D, Berger A, Lafferty J. Text segmentation using exponential models. In : 2nd Conference on Empirical Methods in Natural Language Processing; 1997 Aug 1–2; Providence, RI. p. 37–46.
Article
24. Pevzner L, Hearst MA. A critique and improvement of an evaluation metric for text segmentation. Comput Linguist. 2002; 28(1):19–36.
Article
25. Kim Y, Choi J. Recognizing temporal information in korean clinical narratives through text normalization. Healthc Inform Res. 2011; 17(3):150–155.
Article
26. Chapman WW, Nadkarni PM, Hirschman L, D'Avolio LW, Savova GK, Uzuner O. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J Am Med Inform Assoc. 2011; 18(5):540–543.
Article
27. Seol JW, Yi W, Choi J, Lee KS. Causality patterns and machine learning for the extraction of problem-action relations in discharge summaries. Int J Med Inform. 2017; 98:1–12.
Article
28. Uzuner O, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc. 2011; 18(5):552–556.
Article
29. Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 Challenge. J Am Med Inform Assoc. 2013; 20(5):806–813.
Article
30. Bramsen P, Deshpande P, Lee YK, Barzilay R. Inducing temporal graphs. In : 2006 Conference on Empirical Methods in Natural Language Processing; 2006 Jul 22–23; Sydney, Australia. p. 189–198.