Intest Res.  2018 Jul;16(3):374-383. 10.5217/ir.2018.16.3.374.

Delineating inflammatory bowel disease through transcriptomic studies: current review of progress and evidence

Affiliations
  • 1Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia. norfilza@ppukm.ukm.edu.my
  • 2Gastroenterology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.

Abstract

Inflammatory bowel disease (IBD), which comprises of Crohn's disease and ulcerative colitis, is an idiopathic relapsing and remitting disease in which the interplay of different environment, microbial, immunological and genetic factors that attribute to the progression of the disease. Numerous studies have been conducted in multiple aspects including clinical, endoscopy and histopathology for the diagnostics and treatment of IBD. However, the molecular mechanism underlying the aetiology and pathogenesis of IBD is still poorly understood. This review tries to critically assess the scientific evidence at the transcriptomic level as it would help in the discovery of RNA molecules in tissues or serum between the healthy and diseased or different IBD subtypes. These molecular signatures could potentially serve as a reliable diagnostic or prognostic biomarker. Researchers have also embarked on the study of transcriptome to be utilized in targeted therapy. We focus on the evaluation and discussion related to the publications reporting the different approaches and techniques used in investigating the transcriptomic changes in IBD with the intention to offer new perspectives to the landscape of the disease.

Keyword

Inflammatory bowel diseases; Colitis, ulcerative; Crohn disease; Transcriptome; Microarray analysis

MeSH Terms

Colitis, Ulcerative
Crohn Disease
Endoscopy
Inflammatory Bowel Diseases*
Intention
Microarray Analysis
RNA
Transcriptome
RNA

Figure

  • Fig. 1 A representation of different types of RNAs in eukaryotic cells. Different classes of matured RNAs transcribed from genomic DNA are involved in the regulation of different cellular processes and their dysregulations could lead to numerous diseases including IBD. rRNA, ribosomal RNA; tRNA, transfer RNA.

  • Fig. 2 Mechanism of action of microRNA in repressing the essential genes involved in the regulation of inflammatory processes in epithelial cells through the binding at the 3′ UTR of the genes. Dicer1, RNAse endonuclease; RISC complex, RNA-induced silencing complex; TRBP, protein with 3 double-standard RNA-binding domains; Ago2, Argonaute 2; 3′ UTR, 3′ untranslated regions; TNF-α, tumour necrosis factor α.


Reference

1. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009; 361:2066–2078. PMID: 19923578.
Article
2. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology. 1998; 115:182–205. PMID: 9649475.
Article
3. Mirza AH, Berthelsen CH, Seemann SE, et al. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 2015; 7:39. DOI: 10.1186/s13073-015-0162-2. PMID: 25991924.
Article
4. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010; 28:573–621. PMID: 20192811.
Article
5. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014; 20:91–99. PMID: 24415861.
Article
6. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015; 12:205–217. PMID: 25732745.
Article
7. Hu PJ. Inflammatory bowel disease in Asia: the challenges and opportunities. Intest Res. 2015; 13:188–190. PMID: 26130991.
Article
8. Prideaux L, Kamm MA, De Cruz PP, Chan FK, Ng SC. Inflammatory bowel disease in Asia: a systematic review. J Gastroenterol Hepatol. 2012; 27:1266–1280. PMID: 22497584.
Article
9. Ng SC. Epidemiology of inflammatory bowel disease: focus on Asia. Best Pract Res Clin Gastroenterol. 2014; 28:363–372. PMID: 24913377.
Article
10. Ali RA. The positive influences of increasing age at diagnosis of inflammatory bowel disease on disease prognostication in Asian perspective. Intest Res. 2015; 13:4–5. PMID: 25691837.
Article
11. Ng SC. Emerging trends of inflammatory bowel disease in Asia. Gastroenterol Hepatol (N Y). 2016; 12:193–196. PMID: 27231449.
12. Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn's and colitis epidemiology study. Gastroenterology. 2013; 145:158–165.e2. PMID: 23583432.
Article
13. Kanai T, Matsuoka K, Naganuma M, Hayashi A, Hisamatsu T. Diet, microbiota, and inflammatory bowel disease: lessons from Japanese foods. Korean J Intern Med. 2014; 29:409–415. PMID: 25045286.
Article
14. Ng SC. Emerging leadership lecture: inflammatory bowel disease in Asia: emergence of a “Western” disease. J Gastroenterol Hepatol. 2015; 30:440–445. PMID: 25469874.
Article
15. Cheon JH. Genetics of inflammatory bowel diseases: a comparison between Western and Eastern perspectives. J Gastroenterol Hepatol. 2013; 28:220–226. PMID: 23189979.
Article
16. Söderman J, Berglind L, Almer S. Gene Expression-genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. Biomed Res Int. 2015; 2015:834805. DOI: 10.1155/2015/834805. PMID: 26484354.
17. Xu XR, Liu CQ, Feng BS, Liu ZJ. Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2014; 20:3255–3264. PMID: 24695798.
Article
18. Palmieri O, Mazzoccoli G, Bossa F, et al. Systematic analysis of circadian genes using genome-wide cDNA microarrays in the inflammatory bowel disease transcriptome. Chronobiol Int. 2015; 32:903–916. PMID: 26172092.
Article
19. Fang K, Grisham MB, Kevil CG. Application of comparative transcriptional genomics to identify molecular targets for pediatric IBD. Front Immunol. 2015; 6:165. DOI: 10.3389/fimmu.2015.00165. PMID: 26085826.
Article
20. Planell N, Lozano JJ, Mora-Buch R, et al. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. Gut. 2013; 62:967–976. PMID: 23135761.
Article
21. Hong SN, Joung JG, Bae JS, et al. RNA-seq reveals transcriptomic differences in inflamed and noninflamed intestinal mucosa of Crohn's disease patients compared with normal mucosa of healthy controls. Inflamm Bowel Dis. 2017; 23:1098–1108. PMID: 28613228.
Article
22. Adams J. Transcriptome: connecting the genome to gene function. Nat Educ. 2008; 1:195.
23. Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005; 13:894–897. PMID: 15970949.
24. Mathew S, Shaabad M, Hussein S, Mira L, Qadri I. The need behind messenger RNA sequencing analysis. Int J Adv Res. 2015; 3:1260–1270.
25. Elliott DJ. Illuminating the transcriptome through the genome. Genes (Basel). 2014; 5:235–253. PMID: 24705295.
Article
26. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. Understanding the transcriptome through RNA structure. Nat Rev Genet. 2011; 12:641–655. PMID: 21850044.
Article
27. Peet A, Lieberman M, Marks AD. Marks' basic medical biochemistry (Lieberman, Marks's basic medical biochemistry). 4th ed. Philadelphia: Lippincott Williams & Wilkins;2013.
28. Gray NK, Hrabálková L, Scanlon JP, Smith RW. Poly(A)-binding proteins and mRNA localization: who rules the roost? Biochem Soc Trans. 2015; 43:1277–1284. PMID: 26614673.
Article
29. Holgersen K, Kutlu B, Fox B, et al. High-resolution gene expression profiling using RNA sequencing in patients with inflammatory bowel disease and in mouse models of colitis. J Crohns Colitis. 2015; 9:492–506. PMID: 25795566.
Article
30. Zhang T, Song B, Zhu W, et al. An ileal Crohn's disease gene signature based on whole human genome expression profiles of disease unaffected ileal mucosal biopsies. PLoS One. 2012; 7:e37139. DOI: 10.1371/journal.pone.0037139. PMID: 22606341.
Article
31. Wu F, Dong F, Arendovich N, Zhang J, Huang Y, Kwon JH. Divergent influence of microRNA-21 deletion on murine colitis phenotypes. Inflamm Bowel Dis. 2014; 20:1972–1985. PMID: 25222661.
Article
32. Li E, Hamm CM, Gulati AS, et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One. 2012; 7:e26284. DOI: 10.1371/journal.pone.0026284. PMID: 22719818.
Article
33. van Lierop PP, Swagemakers SM, de Bie CI, et al. Gene expression analysis of peripheral cells for subclassification of pediatric inflammatory bowel disease in remission. PLoS One. 2013; 8:e79549. DOI: 10.1371/journal.pone.0079549. PMID: 24260248.
Article
34. Zhao Z, Jinde S, Kakiuchi C, Kasai K. Extracellular elevation of adrenomedullin, a gene associated with schizophrenia, suppresses heat shock protein 1A/1B mRNA. Neuroreport. 2016; 27:1312–1316. PMID: 27776076.
Article
35. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013; 152:1237–1251. PMID: 23498934.
Article
36. Xu L, Ma L, Lian J, Yang J, Chen S. Gene expression alterations in inflamed and unaffected colon mucosa from patients with mild inflammatory bowel disease. Mol Med Rep. 2016; 13:2729–2735. PMID: 26861951.
Article
37. Costello CM, Mah N, Häsler R, et al. Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med. 2005; 2:e199. DOI: 10.1371/journal.pmed.0020199. PMID: 16107186.
Article
38. Karahan G, Sayar N, Gozum G, Bozkurt B, Konu O, Yulug IG. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer. Oncol Rep. 2015; 33:3131–3145. PMID: 25962577.
Article
39. Porokhovnik LN, Pasekov VP, Egolina NA, et al. Oxidative stress, rRNA genes, and antioxidant enzymes in pathogenesis of schizophrenia and autism: modeling and clinical advices. Zh Obshch Biol. 2013; 74:340–353. PMID: 25438566.
40. Peng GH, Fang F, Zheng J, et al. Mitochondrial 12S rRNA variants studies in 456 subjects with hearing loss in seven schools for deaf and mutes in Zhejiang province. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2012; 47:996–1003. PMID: 23328039.
41. Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med. 2014; 20:306–314. PMID: 24581449.
Article
42. Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C. Structure of transfer RNAs: similarity and variability. Wiley Interdiscip Rev RNA. 2012; 3:37–61. PMID: 21957054.
Article
43. Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008; 14:2095–2103. PMID: 18719243.
Article
44. Melançon CE 3rd, Schultz PG. One plasmid selection system for the rapid evolution of aminoacyl-tRNA synthetases. Bioorg Med Chem Lett. 2009; 19:3845–3847. PMID: 19398201.
Article
45. Novikova IV, Hennelly SP, Tung CS, Sanbonmatsu KY. Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol. 2013; 425:3731–3746. PMID: 23467124.
Article
46. Bassett AR, Akhtar A, Barlow DP, et al. Considerations when investigating lncRNA function in vivo. Elife. 2014; 3:e03058. DOI: 10.7554/eLife.03058. PMID: 25124674.
Article
47. Shoemaker DD, Schadt EE, Armour CD, et al. Experimental annotation of the human genome using microarray technology. Nature. 2001; 409:922–927. PMID: 11237012.
Article
48. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001; 409:860–921. PMID: 11237011.
49. Mercer TR, Neph S, Dinger ME, et al. The human mitochondrial transcriptome. Cell. 2011; 146:645–658. PMID: 21854988.
Article
50. Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013; 11:59. DOI: 10.1186/1741-7007-11-59. PMID: 23721193.
Article
51. Muers M. RNA: genome-wide views of long non-coding RNAs. Nat Rev Genet. 2011; 12:742. DOI: 10.1038/nrg3088.
52. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010; 79:351–379. PMID: 20533884.
Article
53. Schanen BC, Li X. Transcriptional regulation of mammalian miRNA genes. Genomics. 2011; 97:1–6. PMID: 20977933.
Article
54. Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007; 67:976–983. PMID: 17283129.
Article
55. Lüningschrör P, Hauser S, Kaltschmidt B, Kaltschmidt C. MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochim Biophys Acta. 2013; 1833:1894–1903. PMID: 23557785.
Article
56. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215–233. PMID: 19167326.
Article
57. Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs: molecular features and role in cancer. Front Biosci (Landmark Ed). 2012; 17:2508–2540. PMID: 22652795.
Article
58. Di Stefano V, Zaccagnini G, Capogrossi MC, Martelli F. MicroRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul Pharmacol. 2011; 55:111–118. PMID: 21846509.
59. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010; 106:1035–1039. PMID: 20185794.
60. Kim HY, Kwon HY, Thi HT, et al. MicroRNA-132 and microRNA-223 control positive feedback circuit by regulating FOXO3a in inflammatory bowel disease. J Gastroenterol Hepatol. 2016; 31:1727–1735. PMID: 26878986.
61. Häsler R, Sheibani-Tezerji R, Sinha A, et al. Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut. 2017; 66:2087–2097. PMID: 27694142.
62. Palmieri O, Creanza TM, Bossa F, et al. Functional implications of microRNAs in Crohn's disease revealed by integrating microRNA and messenger RNA expression profiling. Int J Mol Sci. 2017; 18:E1580. DOI: 10.3390/ijms18071580. PMID: 28726756.
63. Swanson GR, Burgess HJ, Keshavarzian A. Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol. 2011; 7:29–36. PMID: 21162647.
64. Pekow JR, Kwon JH. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis. 2012; 18:187–193. PMID: 21425211.
Article
65. Coskun M, Bjerrum JT, Seidelin JB, Troelsen JT, Olsen J, Nielsen OH. miR-20b, miR-98, miR-125b-1*, and let-7e* as new potential diagnostic biomarkers in ulcerative colitis. World J Gastroenterol. 2013; 19:4289–4299. PMID: 23885139.
Article
66. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10:57–63. PMID: 19015660.
Article
67. Cardinale CJ, Wei Z, Li J, et al. Transcriptome profiling of human ulcerative colitis mucosa reveals altered expression of pathways enriched in genetic susceptibility loci. PLoS One. 2014; 9:e96153. DOI: 10.1371/journal.pone.0096153. PMID: 24788701.
Article
68. Richard H, Schulz MH, Sultan M, et al. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res. 2010; 38:e112. DOI: 10.1093/nar/gkq041. PMID: 20150413.
Article
69. Kanaan Z, Rai SN, Eichenberger MR, et al. Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat. 2012; 33:551–560. PMID: 22241525.
Article
70. Olaru AV, Yamanaka S, Vazquez C, et al. MicroRNA-224 negatively regulates p21 expression during late neoplastic progression in inflammatory bowel disease. Inflamm Bowel Dis. 2013; 19:471–480. PMID: 23399735.
Article
71. Polytarchou C, Hommes DW, Palumbo T, et al. MicroRNA214 Is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterology. 2015; 149:981–992.e11. PMID: 26055138.
Article
72. Saeidnia S, Manayi A, Abdollahi M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr Drug Discov Technol. 2015; 12:218–224. PMID: 26778084.
Article
Full Text Links
  • IR
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr