1. Ahrens U, Kaden V, Drexler C, Visser N. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis® Pesti in pregnant sows. Vet Microbiol. 2000; 77:83–97.
Article
2. Aucouturier J, Dupuis L, Ganne V. Adjuvants designed for veterinary and human vaccines. Vaccine. 2001; 19:2666–2672.
Article
3. Beer M, Reimann I, Hoffmann B, Depner K. Novel marker vaccines against classical swine fever. Vaccine. 2007; 25:5665–5670.
Article
4. Blome S, Meindl-Böhmer A, Loeffen W, Thuer B, Moennig V. Assessment of classical swine fever diagnostics and vaccine performance. Rev Sci Tech. 2006; 25:1025–1038.
5. Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines: state-of-the-art. Vet Microbiol. 2017; 206:10–20.
6. Bouma A, De Smit AJ, De Jong MC, De Kluijver EP, Moormann RJ. Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine. 2000; 18:1374–1381.
Article
7. Bouma A, de Smit AJ, de Kluijver EP, Terpstra C, Moormann RJ. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet Microbiol. 1999; 66:101–114.
Article
8. de Smit AJ, Bouma A, de Kluijver EP, Terpstra C, Moormann RJ. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination. Vet Microbiol. 2001; 78:307–317.
Article
9. Dewulf J, Laevens H, Koenen F, Mintiens K, de Kruif A. An E2 sub-unit marker vaccine does not prevent horizontal or vertical transmission of classical swine fever virus. Vaccine. 2001; 20:86–91.
Article
10. Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel). 2015; 3:320–343.
Article
11. Dong XN, Chen YH. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine. 2007; 25:205–230.
Article
12. Dowling JK, Mansell A. Toll-like receptors: the Swiss Army knife of immunity and vaccine development. Clin Transl Immunology. 2016; 5:e85.
Article
13. Flori L, Gao Y, Laloë D, Lemonnier G, Leplat JJ, Teillaud A, Cossalter AM, Laffitte J, Pinton P, de Vaureix C, Bouffaud M, Mercat MJ, Lefèvre F, Oswald IP, Bidanel JP, Rogel-Gaillard C. Immunity traits in pigs: substantial genetic variation and limited covariation. PLoS One. 2011; 6:e22717.
Article
14. Fox CB, Kramer RM, Barnes VL, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines. 2013; 1:7–20.
Article
15. Galliher-Beckley A, Pappan LK, Madera R, Burakova Y, Waters A, Nickles M, Li X, Nietfeld J, Schlup JR, Zhong Q, McVey S, Dritz SS, Shi J. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and
Mycoplasma hyopneumoniae vaccines. Vaccine. 2015; 33:2903–2908.
Article
16. Gomez-Villamandos JC, Salguero FJ, Ruiz-Villamor E, Sánchez-Cordón PJ, Bautista MJ, Sierra MA. Classical swine fever: pathology of bone marrow. Vet Pathol. 2003; 40:157–163.
Article
17. Graham SP, Everett HE, Haines FJ, Johns HL, Sosan OA, Salguero FJ, Clifford DJ, Steinbach F, Drew TW, Crooke HR. Challenge of pigs with classical swine fever viruses after C-strain vaccination reveals remarkably rapid protection and insights into early immunity. PLoS One. 2012; 7:e29310.
Article
18. Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol. 2007; 5:505–517.
Article
19. Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods. 2005; 130:36–44.
Article
20. Hua RH, Huo H, Li YN, Xue Y, Wang XL, Guo LP, Zhou B, Song Y, Bu ZG. Generation and efficacy evaluation of recombinant classical swine fever virus E2 glycoprotein expressed in stable transgenic mammalian cell line. PLoS One. 2014; 9:e106891.
Article
21. Huang YL, Deng MC, Wang FI, Huang CC, Chang CY. The challenges of classical swine fever control: modified live and E2 subunit vaccines. Virus Res. 2014; 179:1–11.
Article
22. Hulst MM, Moormann RJ. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol. 1997; 78:2779–2787.
Article
23. Kahn CM. The Merck Veterinary Manual. 9th ed. Whitehouse Station and Great Britain: Merck & Co.;2005.
24. Klinge KL, Vaughn EM, Roof MB, Bautista EM, Murtaugh MP. Age-dependent resistance to Porcine reproductive and respiratory syndrome virus replication in swine. Virol J. 2009; 6:177.
Article
25. König M, Lengsfeld T, Pauly T, Stark R, Thiel HJ. Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol. 1995; 69:6479–6486.
Article
26. Lin GJ, Deng MC, Chen ZW, Liu TY, Wu CW, Cheng CY, Chien MS, Huang C. Yeast expressed classical swine fever E2 subunit vaccine candidate provides complete protection against lethal challenge infection and prevents horizontal virus transmission. Vaccine. 2012; 30:2336–2341.
Article
27. Lindenbach BD, Murray CL, Thiel HJ, Rice CM. Flaviviridae. In : Knipe DM, Howley PM, editors. Fields Virology. Philadelphia: Lippincott Williams and Wilkins;2013. p. 712–747.
28. Luo Y, Li S, Sun Y, Qiu HJ. Classical swine fever in China: a minireview. Vet Microbiol. 2014; 172:1–6.
Article
29. Madera R, Gong W, Wang L, Burakova Y, Lleellish K, Galliher-Beckley A, Nietfeld J, Henningson J, Jia K, Li P, Bai J, Schlup J, McVey S, Tu C, Shi J. Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge. BMC Vet Res. 2016; 12:197.
Article
30. Mallard BA, Wilkie BN. Phenotypic, genetic and epigenetic variation of immune response and disease resistance traits of pigs. Adv Pork Prod. 2007; 18:139–146.
31. Moormann RJ, Bouma A, Kramps JA, Terpstra C, De Smit HJ. Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol. 2000; 73:209–219.
Article
32. Moser M, Leo O. Key concepts in immunology. Vaccine. 2010; 28:Suppl 3. C2–C13.
Article
33. Murphy K, Travers P, Walport M, Janeway C. Janeway's Immunobiology. 8th ed. New York: Garland Science;2012.
34. O'Hagan DT. MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev Vaccines. 2007; 6:699–710.
35. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm. 2008; 364:272–280.
Article
36. Post J, Weesendorp E, Montoya M, Loeffen WL. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunol. 2017; 30:58–69.
Article
37. Rivera A, Siracusa MC, Yap GS, Gause WC. Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol. 2016; 17:356–363.
Article
38. Summerfield A, Ruggli N. Immune responses against classical swine fever virus: between ignorance and lunacy. Front Vet Sci. 2015; 2:10.
Article
39. Suradhat S, Intrakamhaeng M, Damrongwatanapokin S. The correlation of virus-specific interferon-gamma production and protection against classical swine fever virus infection. Vet Immunol Immunopathol. 2001; 83:177–189.
Article
40. van Oirschot JT. Classical swine fever. In : Straw BE, editor. Disease of Swine. Iowa City: Iowa State University Press;1999. p. 159–172.