J Korean Med Assoc.  2018 Apr;61(4):281-289. 10.5124/jkma.2018.61.4.281.

Carbapenem-resistant Enterobacteriaceae: recent updates and treatment strategies

Affiliations
  • 1Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea. symonlee@catholic.ac.kr
  • 2Vaccine Bio-Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.

Abstract

The emergence of carbapenem-resistant Enterobacteriaceae (CRE) has become a major problem within the field of healthcare-associated infections worldwide in the last decade. The treatment of infections caused by CRE is challenging, and a consensus strategy has not been established. This article reviews old and new antibiotics for the treatment of CRE, and summarizes the overall mechanisms of resistance, epidemiology, diagnosis, and infection control of CRE. For CRE treatment, combination therapies may be preferred. Carbapenem still plays an important role in CRE treatment. Other existing treatment options against CRE include colistin, tigecycline, fosfomycin, and aminoglycosides. New therapeutic options include ceftazidime-avibactam, aztreonam-avibactam, plazomicin, eravacycline, meropenem-vaborbactam, and imipenem-cilastatin-relebactam. Few randomized controlled trials have been conducted, so more studies of new agents against CRE are needed. Because there are relatively few therapeutic options for CRE, adequate infection prevention measures and antimicrobial stewardship are required. Moreover, both personal and national preventive efforts are needed.

Keyword

Carbapenem-resistant Enterobacteriaceae; Therapeutics; Carbapenemase; Korea

MeSH Terms

Aminoglycosides
Anti-Bacterial Agents
Colistin
Consensus
Diagnosis
Enterobacteriaceae*
Epidemiology
Fosfomycin
Humans
Infection Control
Korea
Aminoglycosides
Anti-Bacterial Agents
Colistin
Fosfomycin

Reference

1. Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA, Westblade LF. Carbapenemase-producing organisms: a global scourge! Clin Infect Dis. 2017; 10. 16. DOI: 10.1093/cid/cix893. [Epub].
Article
2. Potter RF, D'Souza AW, Dantas G. The rapid spread of carbapenem-resistant enterobacteriaceae. Drug Resist Updat. 2016; 29:30–46.
Article
3. Lee HJ, Choi JK, Cho SY, Kim SH, Park SH, Choi SM, Lee DG, Choi JH, Yoo JH. Carbapenem-resistant enterobacteriaceae: prevalence and risk factors in a single community-based hospital in Korea. Infect Chemother. 2016; 48:166–173.
Article
4. Kim YA, Park YS. Epidemiology and treatment of antimicrobialresistant gram-negative bacteria in Korea. Korean J Intern Med. 2018; 33:247–255.
Article
5. Iovleva A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med. 2017; 37:303–315.
Article
6. Tamma PD, Goodman KE, Harris AD, Tekle T, Roberts A, Taiwo A, Simner PJ. Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae Bacteremia. Clin Infect Dis. 2017; 64:257–264.
Article
7. Lee CS, Doi Y. Therapy of infections due to carbapenem-resistant gram-negative pathogens. Infect Chemother. 2014; 46:149–164.
Article
8. Seo YH, Jeong JH, Lee HT, Kwoun WJ, Park PW, Ahn JY, Kim KH, Seo JY. Analysis of blood culture data at a tertiary university hospital, 2006-2015. Ann Clin Microbiol. 2017; 20:35–41.
Article
9. Park JW, Lee EJ, Lee SJ, Lee HM. Status of carbapenemase-producing enterobacteriaceae incidences in Korea, 2015-2016. Public Health Wkly Rep. 2017; 10:1243–1247.
10. Jeong SH, Kim HS, Kim JS, Shin DH, Kim HS, Park MJ, Shin S, Hong JS, Lee SS, Song W. Prevalence and molecular characteristics of carbapenemase-producing enterobacteriaceae from five hospitals in Korea. Ann Lab Med. 2016; 36:529–535.
Article
11. Choi YH. Treatment of drug resistant bacteria: new bugs, old drugs, and new therapeutic approaches. J Korean Med Assoc. 2014; 57:837–844.
Article
12. Rizek C, Ferraz JR, van der, Giudice M, Mostachio AK, Paez J, Carrilho C, Levin AS, Costa SF. In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives. J Infect Chemother. 2015; 21:114–117.
Article
13. Papst L, Beovic B, Pulcini C, Durante-Mangoni E, Rodriguez-Bano J, Kaye KS, Daikos GL, Raka L, Paul M. ESGAP. ESGBIS, ESGIE and the CRGNB treatment survey study group.Antibiotic treatment of infections caused by carbapenem-resistant gram-negative bacilli: an international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals. Clin Microbiol Infect. 2018; 02. 01. DOI: 10.1016/j.cmi.2018.01.015. [Epub].
Article
14. Bassetti M, Peghin M, Pecori D. The management of multi-drug-resistant enterobacteriaceae. Curr Opin Infect Dis. 2016; 29:583–594.
Article
15. Giacobbe DR, Del Bono V, Trecarichi EM, De Rosa FG, Giannella M, Bassetti M, Bartoloni A, Losito AR, Corcione S, Bartoletti M, Mantengoli E, Saffioti C, Pagani N, Tedeschi S, Spanu T, Rossolini GM, Marchese A, Ambretti S, Cauda R, Viale P, Viscoli C, Tumbarello M. ISGRI-SITA (Italian Study Group on Resistant Infections of the Societa Italiana Terapia Antinfettiva). Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. Clin Microbiol Infect. 2015; 21:1106.
Article
16. Gregoire N, Aranzana-Climent V, Magreault S, Marchand S, Couet W. Clinical pharmacokinetics and pharmacodynamics of colistin. Clin Pharmacokinet. 2017; 56:1441–1460.
Article
17. Song JY, Cheong HJ, Noh JY, Kim WJ. In vitro comparison of anti-biofilm effects against carbapenem-resistant acinetobacter baumannii: imipenem, colistin, tigecycline, rifampicin and combinations. Infect Chemother. 2015; 47:27–32.
Article
18. Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emer-ging older agents in the treatment of infections caused by carbapenem-resistant enterobacteriaceae. Virulence. 2017; 8:403–416.
Article
19. Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. Tigecycline activity tested against carbapenem-resistant enterobacteriaceae from 18 European nations: results from the SENTRY surveillance program (2010-2013). Diagn Microbiol Infect Dis. 2015; 83:183–186.
Article
20. Kim SY, Shin J, Shin SY, Ko KS. Characteristics of carbapenem-resistant Enterobacteriaceae isolates from Korea. Diagn Microbiol Infect Dis. 2013; 76:486–490.
Article
21. Sbrana F, Malacarne P, Viaggi B, Costanzo S, Leonetti P, Leonildi A, Casini B, Tascini C, Menichetti F. Carbapenem-sparing antibiotic regimens for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit. Clin Infect Dis. 2013; 56:697–700.
Article
22. Pontikis K, Karaiskos I, Bastani S, Dimopoulos G, Kalogirou M, Katsiari M, Oikonomou A, Poulakou G, Roilides E, Giamarellou H. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pan-drug-resistant and extensively drug-resistant carbape-nemase-producing Gram-negative bacteria. Int J Antimicrob Agents. 2014; 43:52–59.
Article
23. Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect. 2010; 16:184–186.
Article
24. Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob. 2012; 11:32.
Article
25. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, Spanu T, Ambretti S, Ginocchio F, Cristini F, Losito AR, Tedeschi S, Cauda R, Bassetti M. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012; 55:943–950.
Article
26. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, Stefanou I, Sypsa V, Miriagou V, Nepka M, Georgiadou S, Markogiannakis A, Goukos D, Skoutelis A. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014; 58:2322–2328.
Article
27. Michail G, Labrou M, Pitiriga V, Manousaka S, Sakellaridis N, Tsakris A, Pournaras S. Activity of tigecycline in combination with colistin, meropenem, rifampin, or gentamicin against KPC-producing Enterobacteriaceae in a murine thigh infection model. Antimicrob Agents Chemother. 2013; 57:6028–6033.
Article
28. Fredborg M, Sondergaard TE, Wang M. Synergistic activities of meropenem double and triple combinations against carbapenemase-producing enterobacteriaceae. Diagn Microbiol Infect Dis. 2017; 88:355–360.
Article
29. Chen A, Smith KP, Whitfield BA, Zucchi PC, Lasco TM, Bias TE, Kirby JE, Hirsch EB. Activity of minocycline against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae clinical isolates, with comparison to doxycycline and tigecycline. Diagn Microbiol Infect Dis. 2017; 88:365–367.
Article
30. Doi Y, Paterson DL. Carbapenemase-producing enterobac-teriaceae. Semin Respir Crit Care Med. 2015; 36:74–84.
Article
31. van Duin D, Bonomo RA. Ceftazidime/avibactam and cefto-lozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016; 63:234–241.
Article
32. van Duin D, Lok JJ, Earley M, Cober E, Richter SS, Perez F, Salata RA, Kalayjian RC, Watkins RR, Doi Y, Kaye KS, Fowler VG Jr, Paterson DL, Bonomo RA, Evans S;. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant enterobacteriaceae. Clin Infect Dis. 2018; 66:163–171.
Article
33. Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In vitro activity of aztreonam-avibactam against enterobacteriaceae and pseudomonas aeru-ginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother. 2017; 61:e00472–e00417.
Article
34. Sidjabat H, Nimmo GR, Walsh TR, Binotto E, Htin A, Hayashi Y, Li J, Nation RL, George N, Paterson DL. Carbapenem resis-tance in Klebsiella pneumoniae due to the New Delhi Metallo-β-lactamase. Clin Infect Dis. 2011; 52:481–484.
Article
35. Livermore DM, Mushtaq S, Warner M, Woodford N. In vitro activity of eravacycline against carbapenem-resistant ente-robacteriaceae and acinetobacter baumannii. Antimicrob Agents Chemother. 2016; 60:3840–3844.
Article
36. Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A, Tsai L, Sutcliffe JA, Horn P. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the Investigating Gram-Negative Infections Treated With Eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017; 152:224–232.
Article
37. Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing entero-bacteriaceae. Antimicrob Agents Chemother. 2016; 60:5454–5458.
Article
38. Castanheira M, Huband MD, Mendes RE, Flamm RK. Meropenem-vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPC-producing, multidrug-resistant, and extensively drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother Antimicrob Agents Chemother. 2017; 61:e00567–e00517.
Article
39. Hackel MA, Lomovskaya O, Dudley MN, Karlowsky JA, Sahm DF. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive enterobacteriaceae. Antimicrob Agents Chemother. 2017; 62:e01904–e01917.
Article
40. Kaye KS, Bhowmick T, Metallidis S, Bleasdale SC, Sagan OS, Stus V, Vazquez J, Zaitsev V, Bidair M, Chorvat E, Dragoescu PO, Fedosiuk E, Horcajada JP, Murta C, Sarychev Y, Stoev V, Morgan E, Fusaro K, Griffith D, Lomovskaya O, Alexander EL, Loutit J, Dudley MN, Giamarellos-Bourboulis EJ. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018; 319:788–799.
Article
41. Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, Lagace-Wiens PRS, Walkty A, Denisuik A, Golden A, Gin AS, Hoban DJ, Lynch JP 3rd, Karlowsky JA. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018; 78:65–98.
Article
42. Sims M, Mariyanovski V, McLeroth P, Akers W, Lee YC, Brown ML, Du J, Pedley A, Kartsonis NA, Paschke A. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017; 72:2616–2626.
Article
43. Lucasti C, Vasile L, Sandesc D, Venskutonis D, McLeroth P, Lala M, Rizk ML, Brown ML, Losada MC, Pedley A, Kartsonis NA, Paschke A. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intraabdominal infection. Antimicrob Agents Chemother. 2016; 60:6234–6243.
Article
44. French CE, Coope C, Conway L, Higgins JP, McCulloch J, Okoli G, Patel BC, Oliver I. Control of carbapenemase-producing enterobacteriaceae outbreaks in acute settings: an evidence review. J Hosp Infect. 2017; 95:3–45.
Article
45. Yoo JH. Principle and perspective of healthcare-associated infection control. J Korean Med Assoc. 2018; 61:5–12.
Article
Full Text Links
  • JKMA
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr