Endocrinol Metab.  2015 Mar;30(1):1-6. 10.3803/EnM.2015.30.1.1.

A Closer Look at Papillary Thyroid Carcinoma

Affiliations
  • 1Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. kimwb@amc.seoul.kr

Abstract

Recent surge of thyroid cancer, especially papillary thyroid carcinoma (PTC), ignited a debate on over-diagnosis of cancer. Such increase in incidence is a worldwide phenomenon, but it has been the most prominent in Korea. Although increased detection might have played a major role, some evidences suggest that true increase in incidence have also contributed to such phenomenon. PTC is a very common disease being the most common cancer in human. As the mortality due to PTC is relatively low, understanding pathophysiology of the disease and risk prediction in individual patient have particular importance for optimal management, but little has been known. I suggest a reason for such a commonality of PTC, and would like to describe my view on some aspects of PTC including unresolved issue on management based on our recent observations.

Keyword

Thyroid neoplasms; Well differentiated thyroid carcinoma; Thyroid cancer, papillary

MeSH Terms

Humans
Incidence
Korea
Mortality
Thyroid Neoplasms*

Cited by  4 articles

Ultrasound-Guided Percutaneous Ethanol Ablation for the Management of Recurrent Thyroid Cancer: Evaluation of Efficacy and Impact on Disease Course
Santiago Tofé, Iñaki Argüelles, Guillermo Serra, Honorato García, Antonia Barcelo, Vicente Pereg
Int J Thyroidol. 2020;13(2):128-141.    doi: 10.11106/ijt.2020.13.2.128.

Clinical Analysis of Elderly Thyroid Cancer Patients Following Thyroidectomy
Keun Hee Lee, Hak Hoon Jun, Jong Woo Kim, Seung Ki Kim, Jin Hyung Heo
Korean J Endocr Surg. 2016;16(4):89-93.    doi: 10.16956/kjes.2016.16.4.89.

Genetic Alterations and Their Clinical Implications in High-Recurrence Risk Papillary Thyroid Cancer
Min-Young Lee, Bo Mi Ku, Hae Su Kim, Ji Yun Lee, Sung Hee Lim, Jong-Mu Sun, Se-Hoon Lee, Keunchil Park, Young Lyun Oh, Mineui Hong, Han-Sin Jeong, Young-Ik Son, Chung-Hwan Baek, Myung-Ju Ahn
Cancer Res Treat. 2017;49(4):906-914.    doi: 10.4143/crt.2016.424.

Clinical Outcomes of N1b Papillary Thyroid Cancer Patients Treated with Two Different Doses of Radioiodine Ablation Therapy
Meihua Jin, Jonghwa Ahn, Yu-Mi Lee, Tae-Yon Sung, Won Gu Kim, Tae Yong Kim, Jin-Sook Ryu, Won Bae Kim, Young Kee Shong, Min Ji Jeon
Endocrinol Metab. 2020;35(3):602-609.    doi: 10.3803/EnM.2020.741.


Reference

1. Ito Y, Nikiforov YE, Schlumberger M, Vigneri R. Increasing incidence of thyroid cancer: controversies explored. Nat Rev Endocrinol. 2013; 9:178–184.
2. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988-2005. Cancer. 2009; 115:3801–3807.
3. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014; 140:317–322.
4. Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG, Lee JS. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat. 2013; 45:1–14.
5. Lee SH, Kim TY, Ryu JS, Gong G, Kim WB, Kim SC, Hong SJ, Shong YK. Trends analysis of characteristics of thyroid cancer patients in one medical center. J Korean Endocr Soc. 2008; 23:35–43.
6. Aschebrook-Kilfoy B, Schechter RB, Shih YC, Kaplan EL, Chiu BC, Angelos P, Grogan RH. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol Biomarkers Prev. 2013; 22:1252–1259.
7. Aschebrook-Kilfoy B, Grogan RH, Ward MH, Kaplan E, Devesa SS. Follicular thyroid cancer incidence patterns in the United States, 1980-2009. Thyroid. 2013; 23:1015–1021.
8. Vergamini LB, Frazier AL, Abrantes FL, Ribeiro KB, Rodriguez-Galindo C. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014; 164:1481–1485.
9. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CW, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499:214–218.
10. Poncin S, Colin IM, Gerard AC. Minimal oxidative load: a prerequisite for thyroid cell function. J Endocrinol. 2009; 201:161–167.
11. Melis JP, Kuiper RV, Zwart E, Robinson J, Pennings JL, van Oostrom CT, Luijten M, van Steeg H. Slow accumulation of mutations in Xpc-/- mice upon induction of oxidative stress. DNA Repair (Amst). 2013; 12:1081–1086.
12. Wang D, Feng JF, Zeng P, Yang YH, Luo J, Yang YW. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr Relat Cancer. 2011; 18:773–782.
13. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013; 2013:965212.
14. Han JM, Kim TY, Jeon MJ, Yim JH, Kim WG, Song DE, Hong SJ, Bae SJ, Kim HK, Shin MH, Shong YK, Kim WB. Obesity is a risk factor for thyroid cancer in a large, ultrasonographically screened population. Eur J Endocrinol. 2013; 168:879–886.
15. Kwon H, Kim M, Choi YM, Jang EK, Jeon MJ, Kim WG, Kim TY, Shong YK, Song DE, Baek JH, Hong SJ, Kim WB. Lack of associations between body mass index and clinical outcomes in patients with papillary thyroid carcinoma. Endocrinol Metab (Seoul). 2014; 29:e54.
16. Kim WG, Choi HJ, Kim WB, Kim EY, Yim JH, Kim TY, Gong G, Kim SY, Chung N, Shong YK. Basal STAT3 activities are negatively correlated with tumor size in papillary thyroid carcinomas. J Endocrinol Invest. 2012; 35:413–418.
17. Kim WG, Kim WB, Kim TY, Kim EY, Ryu JS, Gong G, Lee JH, Yoon JH, Kim JM, Hong SJ, Shong YK. Prognostic factors correlated with cancer specific survival and disease-free survival of papillary thyroid carcinoma in Korea. J Korean Thyroid Assoc. 2008; 1:17–23.
18. Jeon MJ, Yoon JH, Han JM, Yim JH, Hong SJ, Song DE, Ryu JS, Kim TY, Shong YK, Kim WB. The prognostic value of the metastatic lymph node ratio and maximal metastatic tumor size in pathological N1a papillary thyroid carcinoma. Eur J Endocrinol. 2013; 168:219–225.
19. Kim TY, Kim WB, Rhee YS, Song JY, Kim JM, Gong G, Lee S, Kim SY, Kim SC, Hong SJ, Shong YK. The BRAF mutation is useful for prediction of clinical recurrence in low-risk patients with conventional papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2006; 65:364–368.
20. Yim JH, Kim WG, Jeon MJ, Han JM, Kim TY, Yoon JH, Hong SJ, Song DE, Gong G, Shong YK, Kim WB. Association between expression of X-linked inhibitor of apoptosis protein and the clinical outcome in a BRAF V600E-prevalent papillary thyroid cancer population. Thyroid. 2014; 24:689–694.
21. Kim EY, Kim WG, Kim WB, Kim TY, Kim JM, Ryu JS, Hong SJ, Gong G, Shong YK. Coexistence of chronic lymphocytic thyroiditis is associated with lower recurrence rates in patients with papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2009; 71:581–586.
22. Jeon MJ, Kim TY, Kim WG, Han JM, Jang EK, Choi YM, Song DE, Yoon JH, Chung KW, Hong SJ, Shong YK, Kim WB. Differentiating the location of cervical lymph node metastasis is very useful for estimating the risk of distant metastases in papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2014; 81:593–599.
23. Kim TY, Kim WG, Kim WB, Shong YK. Current status and future perspectives in differentiated thyroid cancer. Endocrinol Metab (Seoul). 2014; 29:217–225.
24. Kim WG, Yoon JH, Kim WB, Kim TY, Kim EY, Kim JM, Ryu JS, Gong G, Hong SJ, Shong YK. Change of serum antithyroglobulin antibody levels is useful for prediction of clinical recurrence in thyroglobulin-negative patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2008; 93:4683–4689.
25. Han JM, Kim WB, Yim JH, Kim WG, Kim TY, Ryu JS, Gong G, Sung TY, Yoon JH, Hong SJ, Kim EY, Shong YK. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid. 2012; 22:784–790.
26. Yim JH, Kim EY, Bae Kim W, Kim WG, Kim TY, Ryu JS, Gong G, Hong SJ, Yoon JH, Shong YK. Long-term consequence of elevated thyroglobulin in differentiated thyroid cancer. Thyroid. 2013; 23:58–63.
27. Kim WG, Ryu JS, Kim EY, Lee JH, Baek JH, Yoon JH, Hong SJ, Kim ES, Kim TY, Kim WB, Shong YK. Empiric high-dose 131-iodine therapy lacks efficacy for treated papillary thyroid cancer patients with detectable serum thyroglobulin, but negative cervical sonography and 18F-fluorodeoxyglucose positron emission tomography scan. J Clin Endocrinol Metab. 2010; 95:1169–1173.
28. Yim JH, Kim WB, Kim EY, Kim WG, Kim TY, Ryu JS, Gong G, Hong SJ, Shong YK. The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J Clin Endocrinol Metab. 2011; 96:2049–2056.
29. Yim JH, Kim WB, Kim EY, Kim WG, Kim TY, Ryu JS, Moon DH, Sung TY, Yoon JH, Kim SC, Hong SJ, Shong YK. Adjuvant radioactive therapy after reoperation for locoregionally recurrent papillary thyroid cancer in patients who initially underwent total thyroidectomy and high-dose remnant ablation. J Clin Endocrinol Metab. 2011; 96:3695–3700.
30. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Shong YK, Sherman SI, Smit JW, Chung J, Kappeler C, Pena C, Molnar I, Schlumberger MJ. DECISION investigators. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014; 384:319–328.
31. Lenvatinib slows progression of thyroid cancer. Cancer Discov. 2014; 4:OF7.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr