Endocrinol Metab.  2015 Sep;30(3):326-333. 10.3803/EnM.2015.30.3.326.

Plasma Adiponectin Levels in Elderly Patients with Prediabetes

Affiliations
  • 1Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea. bonjeong@cnu.ac.kr

Abstract

BACKGROUND
The significance of adiponectin levels in elderly individuals with prediabetes has yet to be determined. Thus, the present study was performed to evaluate the relationships between adiponectin levels and anthropometric variables, body composition parameters, insulin sensitivity, and lipid profiles in elderly prediabetic patients.
METHODS
The present study included 120 subjects with prediabetes who were >65 years of age and were selected from among 1,993 subjects enrolled in the Korea Rural Genomic Cohort Study. All subjects underwent a 75 g oral glucose tolerance test and tests for measurement of insulin sensitivity. All diagnoses of prediabetes satisfied the criteria of the American Diabetes Association.
RESULTS
Plasma adiponectin levels were lower in elderly prediabetic subjects than elderly subjects with normal glucose tolerance (P<0.01) as well as in elderly prediabetic patients with metabolic syndrome (MetS) than in those without MetS (P<0.02). When the subjects were categorized into two groups according to plasma adiponectin levels, the waist-to-hip ratio and 2-hour insulin levels were significantly lower in individuals with high plasma adiponectin levels than in those with low plasma adiponectin levels. Additionally, the plasma adiponectin levels of elderly prediabetic subject were inversely correlated with body mass index (BMI), waist circumference (WC), waist-to-hip ratio, visceral fat, visceral fat ratio, and 2-hour insulin levels.
CONCLUSION
The present findings demonstrated that the major factors correlated with adiponectin levels in elderly prediabetic subjects were BMI, WC, waist-to-hip ratio, visceral fat, visceral fat ratio, and 2-hour insulin levels.

Keyword

Aged; Prediabetic state; Adiponectin; Metabolic syndrome

MeSH Terms

Adiponectin*
Aged*
Body Composition
Body Mass Index
Cohort Studies
Diagnosis
Glucose
Glucose Tolerance Test
Humans
Insulin
Insulin Resistance
Intra-Abdominal Fat
Korea
Plasma*
Prediabetic State*
Waist Circumference
Waist-Hip Ratio
Adiponectin
Glucose
Insulin

Reference

1. Cowie CC, Rust KF, Ford ES, Eberhardt MS, Byrd-Holt DD, Li C, et al. Full accounting of diabetes and pre-diabetes in the US population in 1988-1994 and 2005-2006. Diabetes Care. 2009; 32:287–294.
2. Gill T. Epidemiology and health impact of obesity: an Asia Pacific perspective. Asia Pac J Clin Nutr. 2006; 15:Suppl. 3–14.
3. Kim CS, Ko SH, Kwon HS, Kim NH, Kim JH, Lim S, et al. Prevalence, awareness, and management of obesity in Korea: data from the Korea National Health and Nutrition Examination Survey (1998-2011). Diabetes Metab J. 2014; 38:35–43.
4. Ginter E, Simko V. Diabetes type 2 pandemic in 21st century. Bratisl Lek Listy. 2010; 111:134–137.
5. Koh-Banerjee P, Wang Y, Hu FB, Spiegelman D, Willett WC, Rimm EB. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am J Epidemiol. 2004; 159:1150–1159.
6. Walker SP, Rimm EB, Ascherio A, Kawachi I, Stampfer MJ, Willett WC. Body size and fat distribution as predictors of stroke among US men. Am J Epidemiol. 1996; 144:1143–1150.
7. Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001; 108:1875–1881.
8. Tilg H, Moschen AR. Role of adiponectin and PBEF/visfatin as regulators of inflammation: involvement in obesity-associated diseases. Clin Sci (Lond). 2008; 114:275–288.
9. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001; 86:3815–3819.
10. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001; 50:2094–2099.
11. Choi KM, Lee J, Lee KW, Seo JA, Oh JH, Kim SG, et al. Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in elderly Koreans. Clin Endocrinol (Oxf). 2004; 61:75–80.
12. Nam JS, Park JS, Cho MH, Jee SH, Lee HS, Ahn CW, et al. The association between pulse wave velocity and metabolic syndrome and adiponectin in patients with impaired fasting glucose: cardiovascular risks and adiponectin in IFG. Diabetes Res Clin Pract. 2009; 84:145–151.
13. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120:1640–1645.
14. American Diabetes Association. Standards of medical care in diabetes: 2014. Diabetes Care. 2014; 37:Suppl 1. S14–S80.
15. Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001; 50:1126–1133.
16. Saltevo J, Kautiainen H, Vanhala M. Gender differences in adiponectin and low-grade inflammation among individuals with normal glucose tolerance, prediabetes, and type 2 diabetes. Gend Med. 2009; 6:463–470.
17. Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002; 51:2734–2741.
18. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003; 46:459–469.
19. Snehalatha C, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A. Plasma adiponectin is an independent predictor of type 2 diabetes in Asian indians. Diabetes Care. 2003; 26:3226–3229.
20. Laughlin GA, Barrett-Connor E, May S. Sex-specific determinants of serum adiponectin in older adults: the role of endogenous sex hormones. Int J Obes (Lond). 2007; 31:457–465.
21. Morad V, Abrahamsson A, Dabrosin C. Estradiol affects extracellular leptin:adiponectin ratio in human breast tissue in vivo. J Clin Endocrinol Metab. 2014; 99:3460–3467.
22. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 2010; 91:258S–261S.
23. Villarreal-Molina MT, Antuna-Puente B. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie. 2012; 94:2143–2149.
24. Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007; 380:24–30.
25. Calton EK, Miller VS, Soares MJ. Factors determining the risk of the metabolic syndrome: is there a central role for adiponectin? Eur J Clin Nutr. 2013; 67:485–491.
26. Yoo KH, Oh IM, Park JE, Kim MJ, Park JS, Park SJ, et al. Metabolic syndrome is associated with low adiponectin level and increased insulin resistance in apparently healthy Koreans. Korean J Obes. 2012; 21:175–182.
27. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014; 2014:658913.
28. Hulthe J, Hulten LM, Fagerberg B. Low adipocyte-derived plasma protein adiponectin concentrations are associated with the metabolic syndrome and small dense low-density lipoprotein particles: atherosclerosis and insulin resistance study. Metabolism. 2003; 52:1612–1614.
29. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004; 68:975–981.
30. De Rosa A, Monaco ML, Capasso M, Forestieri P, Pilone V, Nardelli C, et al. Adiponectin oligomers as potential indicators of adipose tissue improvement in obese subjects. Eur J Endocrinol. 2013; 169:37–43.
31. Hamilton MP, Gore MO, Ayers CR, Xinyu W, McGuire DK, Scherer PE. Adiponectin and cardiovascular risk profile in patients with type 2 diabetes mellitus: parameters associated with adiponectin complex distribution. Diab Vasc Dis Res. 2011; 8:190–194.
32. Mohan V, Deepa R, Pradeepa R, Vimaleswaran KS, Mohan A, Velmurugan K, et al. Association of low adiponectin levels with the metabolic syndrome: the Chennai Urban Rural Epidemiology Study (CURES-4). Metabolism. 2005; 54:476–481.
33. Hung J, McQuillan BM, Thompson PL, Beilby JP. Circulating adiponectin levels associate with inflammatory markers, insulin resistance and metabolic syndrome independent of obesity. Int J Obes (Lond). 2008; 32:772–779.
34. Lee SE, Moon JH, Ahn JH, Oh YS, Shinn SH. The association between plasma adiponectin and the components of metabolic syndrome in adults with abdominal obesity. Korean J Obes. 2007; 16:147–153.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr