1. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol. 2013; 66(4):398–407.
Article
2. Song MH, Kim SH, Park DK, Lee YH. A multi-classifier based guideline sentence classification system. Healthc Inform Res. 2011; 17(4):224–231.
Article
3. Tomar D, Agarwal S. Feature selection based least square twin support vector machine for diagnosis of heart disease. Int J Biosci Biotechnol. 2014; 6(2):69–82.
Article
5. Khatibi V, Montazer GA. A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Syst Appl. 2010; 37(12):8536–8542.
Article
6. Krishnaiah V, Narsimha G, Chandra NS. Heart disease prediction system using data mining technique by fuzzy K-NN approach. In : Satapathy S, Govardhan A, Raju K, Mandal J, editors. Emerging ICT for Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India (CSI) Volume 1. Cham: Springer International Publishing;2015. p. 371–384.
7. Lee DY, Rhee EJ, Choi ES, Kim JH, Won JC, Park CY, et al. Comparison of the predictability of cardiovascular disease risk according to different metabolic syndrome criteria of American Heart Association/National Heart, Lung, and Blood Institute and International Diabetes Federation in Korean men. Korean Diabetes J. 2008; 32(4):317–327.
Article
8. Kim JK, Lee JS, Park DK, Lim YS, Lee YH, Jung EY. Adaptive mining prediction model for content recommendation to coronary heart disease patients. Clust Comput. 2014; 17(3):881–891.
Article
9. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Ithaca (NY): arXiv.org;c2017. cited at 2017 Jul 1. Available:
https://arxiv.org/abs/1702.05747.
10. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18(7):1527–1554.
Article
11. Dahl GE, Yu D, Deng L, Acero A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans Audio Speech Lang Process. 2012; 20(1):30–42.
Article
12. Abdel-Zaher AM, Eldeib AM. Breast cancer classification using deep belief networks. Expert Syst Appl. 2016; 46:139–144.
Article
13. Tamilselvan P, Wang P. Failure diagnosis using deep belief learning based health state classification. Reliab Eng Syst Saf. 2013; 115:124–135.
Article
14. Fakoor R, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. In : Proceedings of the International Conference on Machine Learning; 2013 Jun 17-19; Atlanta, GA.
15. Korea Center for Disease Control and Prevention. The sixth Korea National Health & Nutrition Examination Survey (KNHANES-VI) 2013 [Internet]. Cheongju: Korea Center for Disease Control and Prevention;c2017. cited at 2017 Jul 1. Available:
http://knhanes.cdc.go.kr/.
16. Ankle Brachial Index Collaboration. Fowkes FG, Murray GD, Butcher I, Heald CL, Lee RJ, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a metaanalysis. JAMA. 2008; 300(2):197–208.
Article
18. Hinton GE. A practical guide to training restricted Boltzmann machines. Toronto: University of Toronto;2010.
19. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313(5786):504–507.
Article
20. Salama MA, Hassanien AE, Fahmy AA. Deep belief network for clustering and classification of a continuous data. In : Proceedings of 2010 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); 2010 Dec 15-18; Luxor, Egypt. p. 473–477.