1. Oh SK, Seong HU, Lim DH, Kim JH, Son BK, Kim HC, Lee JY, Leem JH. Relationship between air pollutants and prevalence of allergic disease/pulmonary function in students in Incheon. Pediatr Allergy Respir Dis. 2010; 20:264–276.
2. Nilsson ST, Spieksm FM. Traveller's allergy service guide. Stockholm (Sweden): Palynological Laboratory, Swedish Museum of Natural History, and Fisons Sweden AB;1992.
3. Lee SY, Park JS, Lee KS, Hong CH. Pollen allergy in children (ll): the significance of tree pollen as a causative allergen in children with allergic diseases. J Korean Pediatr Soc. 1998; 41:799–807.
4. Suk KD, Nam SH. The airborne pollen gains and the correlation with number of patients and medicine prescribed for allergies in Kyungsan. J Korean Soc Hyg Sci. 2004; 10:143–153.
5. Oh YC, Kim HA, Kang IJ, Cheong JT, Kim SW, Kook MH, Kim BS, Lee HB, Oh JW. Evaluation of the relationship between pollen count and the outbreak of allergic diseases. Pediatr Allergy Respir Dis. 2009; 19:354–364.
6. Prentice IC. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res. 1985; 23:76–86.
Article
7. Romano B, Mincigrucci G, Frenguelli G, Bricchi E. Airborne pollen content in the atmosphere of central Italy (1982-1986). Experientia. 1988; 44:625–629.
Article
8. Yasaka M, Kobayashi S, Takeuchi S, Tokuda S, Takiya M, Ohno Y. Prediction of birch airborne pollen counts by examining male catkin numbers in Hokkaido, northern Japan. Aerobiologia. 2009; 25:111–117.
Article
9. Choi HS, Cho JS, Choo JH, Ko WK, Ahn HY. Allergic rhinitis to Japanese cedar in Cheju Island. Korean J Otolaryngol-Head Neck Surg. 1999; 42:1129–1133.
10. Oh JW, Lee HR, Kim JS, Lee KI, Kang YJ, Kim SW, Kook MH, Kang HY, Kim JS, Lee MH, Lee HB, Kim KE, Pyun BY, Lee SI, Han MJ. Aerobiological study of pollen and mold in the 10 states of Korea. Pediatr Allergy Respir Dis. 2000; 10:22–33.
11. Oh JW, Kang IJ, Kim SW, Kook MH, Kim BS, Shin KS, Hahn YS, Lee HB, Shon MH, Cheong JT, Lee HR, Kim KE. The correlation between increased sensitization rate to weeds in children and the annual increase in weed pollen in Korea. Pediatr Allergy Respir Dis. 2006; 16:114–121.
12. Oh JW. Features and recent changes of airborne pollen in Korea. Korean J Asthma Allergy Clin Immunol. 2007; 27:1–7.
13. Park KJ, Kim HA, Kim KR, Oh JW, Lee SY, Choi YJ. Characteristics of regional distribution of pollen concentration in Korean Peninsula. Korean J Agric For Meteorol. 2008; 10:167–176.
Article
14. Oh JW. Development of pollen concentration prediction models. J Korean Med Assoc. 2009; 52:579–591.
Article
15. Kim JH, Oh JW, Lee HB, Kim SW, Kang IJ, Kook MH, Kim BS, Park KS, Baek HS, Kim KR, Choi YJ. Changes in sensitization rate to weed allergens in children with increased weeds pollen counts in Seoul Metropolitan area. J Korean Med Sci. 2012; 27:350–355.
Article
16. Oh JW, Lee HB, Kang IJ, Kim SW, Park KS, Kook MH, Kim BS, Baek HS, Kim JH, Kim JK, Lee DJ, Kim KR, Choi YJ. The revised edition of Korean calendar for allergenic pollens. Allergy Asthma Immunol Res. 2012; 4:5–11.
Article
17. Sung MS, Park YJ, Park GH, Oh JW, Kim SW. The correlation between allergy sensitization rate in pediatric and aerobiological study for airborne pollen in Busan for 15 years. Allergy Asthma Respir Dis. 2014; 2:38–47.
Article
18. Agashe SN, Caulton E. Aerobiology-Applications of airborne pollen studies in allergy. In : Agashe SN, Caulton E, editors. Pollen and spores: applications with special emphasis on aerobiology and allergy. Enfield (NH): Science Publishers;2009. p. 237–258.
19. Jung IY, Choi KR. Relationship between airborne pollen concentrations and meteorological parameters in Ulsan, Korea. J Ecol Environ. 2013; 36:65–71.
Article