1. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001. 14:933–951.
Article
2. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother. 2002. 46:1–11.
Article
3. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of
Escherichia coli and
Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother. 2005. 56:698–702.
Article
4. Lee K, Lee M, Shin JH, Lee MH, Kang SH, Park AJ, et al. Prevalence of plasmid-mediated AmpC β-lactamases in
Escherichia coli and
Klebsiella pneumoniae in Korea. Microb Drug Resist. 2006. 12:44–49.
Article
5. Yan JJ, Ko WC, Wu HM, Tsai SH, Chuang CL, Wu JJ. Complexity of
Klebsiella pneumoniae isolates resistant to both cephamycins and extended-spectrum cephalosporins at a teaching hospital in Taiwan. J Clin Microbiol. 2004. 42:5337–5340.
Article
6. Moland ES, Hanson ND, Black JA, Hossain A, Song W, Thomson KS. Prevalence of newer β-lactamases in gram-negative clinical isolates collected in the United States from 2001 to 2002. J Clin Microbiol. 2006. 44:3318–3324.
Article
7. Clinical and Laboratory Standards Institute. M100-S17. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement . 2007. Wayne, PA: Clinical and Laboratory Standards Institute.
8. Brun-Buisson C, Legrand P, Philippon A, Montravers F, Ansquer M, Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet. 1987. 2:302–306.
9. Clinical and Laboratory Standards Institute. M7-A7. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard. 2006. 7th ed. Wayne, PA: Clinical and Laboratory Standards Institute.
10. Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in
Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J Clin Microbiol. 2005. 43:3110–3113.
Article
11. Mathew A, Harris AM, Marshall MJ, Rose GW. The use of analytical isoelectric focusing for detection and identification of β-lactamases. J Gen Microbiol. 1975. 88:169–178.
Article
12. Takahashi S, Nagano Y. Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. J Clin Microbiol. 1984. 20:608–613.
Article
13. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002. 40:2153–2162.
Article
14. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, et al. Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal
ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006. 55:219–224.
Article
15. Livermore DM, Yuan M. Antibiotic resistance and production of extended-spectrum beta-lactamases amongst
Klebsiella spp. from intensive care units in Europe. J Antimicrob Chemother. 1996. 38:409–424.
Article
16. Kim J, Kwon Y, Pai H, Kim JW, Cho DT. Survey of
Klebsiella pneumoniae strains producing extended-spectrum β-lactamases: prevalence of SHV-12 and SHV-2a in Korea. J Clin Microbiol. 1998. 36:1446–1449.
Article
17. Pai H. The characteristics of extended-spectrum β-lactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J. 1998. 39:514–519.
18. Yum JH, Kim S, Lee H, Yong D, Lee K, Cho SN, et al. Emergence and wide dissemination of CTX-M-type ESBLs, and CMY-2 and DHA-1-type AmpC β-lactamases in Korean respiratory isolates of Klebsiella pneumoniae. J Korean Med Sci. 2005. 20:961–965.
19. Gaillot O, Clément C, Simonet M, Philippon A. Novel transferable β-lactam resistance with cephalosporinase characteristics in
Salmonella enteritidis. J Antimicrob Chemother. 1997. 39:85–87.
Article
20. Verdet C, Benzerara Y, Gautier V, Adam O, Ould-Hocine Z, Arlet G. Emergence of DHA-1-producing
Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating
Morganella morganii. Antimicrob Agents Chemother. 2006. 50:607–617.
Article
21. Moland ES, Black JA, Ourada J, Reisbig MD, Hanson ND, Thomson KS. Occurrence of newer β-lactamases in
Klebsiella pneumoniae isolates from 24 U.S. hospitals. Antimicrob Agents Chemother. 2002. 46:3837–3842.
Article
22. Song W, Lee KM, Kim HS, Kim JS, Kim J, Jeong SH, et al. Clonal spread of both oxyimino-cephalosporin- and cefoxitin-resistant
Klebsiella pneumoniae isolates co-producing SHV-2a and DHA-1 β-lactamase at a burns intensive care unit. Int J Antimicrob Agents. 2006. 28:520–524.
Article
23. Muratani T, Kobayashi T, Matsumoto T. Emergence and prevalence of β-lactamase-producing
Klebsiella pneumoniae resistant to cephems in Japan. Int J Antimicrob Agents. 2006. 27:491–499.
Article
24. De Gheldre Y, Struelens MJ, Glupczynski Y, De Mol P, Maes N, Nonhoff C, et al. National epidemiologic surveys of Enterobacter aerogenes in Belgian hospitals from 1996 to 1998. J Clin Microbiol. 2001. 39:889–896.
Article
25. Thomson KS, Prevan AM, Sanders CC. Novel plasmid-mediated β-lactamases in enterobacteriaceae: emerging problems for new β-lactam antibiotics. Curr Clin Top Infect Dis. 1996. 16:151–163.