Yonsei Med J.  2009 Apr;50(2):304-306.

Microsatellite Marker in Gamma - Aminobutyric Acid - A Receptor Beta 3 Subunit Gene and Autism Spectrum Disorders in Korean Trios

Affiliations
  • 1Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
  • 2Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea. soochurl@snu.ac.kr

Abstract

This study aimed to identify the association between gamma-aminobutyric acid-A (GABA-A) receptor subunit beta3 (GABRB3) gene and autism spectrum disorders (ASD) in Korea. Fifty-eight children with ASD [47 boys (81.0%), 5.5 +/- 4.1 years old], 46 family trios, and 86 healthy control subjects [71 males (82.6%), 33.6 +/- 9.3 years old] were recruited. Transmission disequilibrium test revealed that, 183 bp long allele in GABRB3 gene was preferentially transmitted in families with ASD (p = 0.025), whereas a population-based case-control study, however, showed no association between ASD and GABRB3 microsatellite polymorphism. Our data provide preliminary evidence that GABRB3 gene is associated with ASD in Korea.

Keyword

Autism spectrum disorders; genetics; transmission disequilibrium test; microsatellite; gamma-aminobutyric acid-A receptor subunit beta3

MeSH Terms

Adult
Asian Continental Ancestry Group/*genetics
Autistic Disorder/*genetics
Child
Child, Preschool
Female
Genetic Predisposition to Disease
Humans
Infant
Korea
Male
Microsatellite Repeats/*genetics
Pedigree
Receptors, GABA-A/*genetics

Reference

1. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med. 1995. 25:63–77.
Article
2. Bolton P, Macdonald H, Pickles A, Rios P, Goode S, Crowson M, et al. A case-control family history study of autism. J Child Psychol Psychiatry. 1994. 35:877–900.
Article
3. Aldred S, Moore KM, Fitzgerald M, Waring RH. Plasma amino acid levels in children with autism and their families. J Autism Dev Disord. 2003. 33:93–97.
4. Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord. 2001. 31:537–543.
5. Chugani DC, Muzik O, Juhász C, Janisse JJ, Ager J, Chugani HT. Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol. 2001. 49:618–626.
Article
6. Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, et al. Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit. 2002. 8:PR1–PR6.
7. Moreno-Fuenmayor H, Borjas L, Arrieta A, Valera V, Socorro-Candanoza L. Plasma excitatory amino acids in autism. Invest Clin. 1996. 37:113–128.
8. Cook EH Jr, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ, et al. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet. 1998. 62:1077–1083.
Article
9. Buxbaum JD, Silverman JM, Smith CJ, Greenberg DA, Kilifarski M, Reichert J, et al. Association between a GABRB3 polymorphism and autism. Mol Psychiatry. 2002. 7:311–316.
Article
10. Curran S, Roberts S, Thomas S, Veltman M, Browne J, Medda E, et al. An association analysis of microsatellite markers across the Prader-Willi/Angelman critical region on chromosome 15 (q11-13) and autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet. 2005. 137B:25–28.
Article
11. Martin ER, Menold MM, Wolpert CM, Bass MP, Donnelly SL, Ravan SA, et al. Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet. 2000. 96:43–48.
Article
12. Maestrini E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A, et al. Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet. 1999. 88:492–496.
Article
13. Salmon B, Hallmayer J, Rogers T, Kalaydjieva L, Petersen PB, Nicholas P, et al. Absence of linkage and linkage disequilibrium to chromosome 15q11-q13 markers in 139 multiplex families with autism. Am J Med Genet. 1999. 88:551–556.
Article
14. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Version (SCID-P). 1997. Washington, DC: American Psychiatric Press.
15. Wechsler E. Wechsler Adult Intelligence Scale-Revised (WAIS-R) manual. 1981. New York: The Psychological Corporation.
16. Mutirangura A, Ledbetter SA, Kuwano A, Chinault AC, Ledbetter DH. Dinucleotide repeat polymorphism at the GABAA receptor beta 3 (GABRB3) locus in the Angelman/Prader-Willi region (AS/PWS) of chromosome 15. Hum Mol Genet. 1992. 1:67.
Article
17. Kim SA, Kim JH, Park M, Cho IH, Yoo HJ. Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology. 2006. 54:160–165.
18. Sham P. Genetic epidemiology. Br Med Bull. 1996. 52:408–433.
19. Karayiorgou M, Gogos JA. Dissecting the genetic complexity of schizophrenia. Mol Psychiatry. 1997. 2:211–223.
20. Murphy KC, Cardno AG, McGuffin P. The molecular genetics of schizophrenia. J Mol Neurosci. 1996. 7:147–157.
Full Text Links
  • YMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr