Nat Prod Sci.  2017 Mar;23(1):9-15. 10.20307/nps.2017.23.1.9.

Optimization of Extraction Conditions for Active Compounds of Herbal Medicinal Formula, DF, by Response Surface Methodology

Affiliations
  • 1College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea. heejyang@kangwon.ac.kr
  • 2College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Korea.
  • 3Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea.
  • 4Department of Formula Sciences, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea.
  • 5Department of Microbiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea.

Abstract

DF formula is comprised of three traditional herbs, Ephedra intermedia, Rheum palmatum and Lithospermum erythrorhizon, and locally used for treating of the metabolic diseases, such as obesity and diabetes in Korea. We tried to optimize the extraction conditions of two major components, (−)-ephedrine and (+)-pseudoephedrine, in DF formula using response surface methodology with Box-Behnken design (BBD). The experimental conditions with 70% for EtOH concentrations, 4.8 hour for extraction hours and 8.7 times for the solvent to material ratio were suggested for the optimized extraction of DF formula with the highest amounts of (−)-ephedrine and (+)-pseudoephedrine in the designed model.

Keyword

Response surface methodology; Ephedra intermedia; (−)-ephedrine; (+)-pseudoephedrine; HPLC

MeSH Terms

Chromatography, High Pressure Liquid
Ephedra
Korea
Lithospermum
Metabolic Diseases
Obesity
Rheum

Figure

  • Fig. 1. HPLC chromatograms of (+)-pseudoephedrine (1), (−)-ephedrine (2) and DF formula. The detailed HPLC conditions described in Experimental section.

  • Fig. 2. 3D surface plots of the EtOH concentrations versus the extraction hours (a), the EtOH concentrations versus solvent to material ratio (b) and the extraction hours versus solvent to material ratio (c) for the yield of (−)-ephedrine (e), and the EtOH concentrations versus the extraction hours (d), the EtOH concentrations versus solvent to material ratio (e) and the extraction hours versus solvent to material ratio (f) for the yields of (+)-pseudoephedrine.


Reference

References

(1). Uzuner H.., Bauer R.., Fan T. P.., Guo D. A.., Dias A.., El-Nezami H.., Efferth T.., Williamson E. M.., Heinrich M.., Robinson N.., Hylands P. J.., Hendry B. M.., Cheng Y. C.., Xu Q. J.Ethnopharmacol. 2012. 140:458–468.
(2). Ferreira S. L.., Bruns R. E.., da Silva E. G.., Dos Santos W. N.., Quintella C. M.., David J. M.., de Andrade J. B.., Breitkreitz M. C.., Jardim I. C.., Neto B. B. J.Chromatogr. A. 2007. 1158:2–14.
(3). Roman M. C. J.AOAC Int. 2004. 87:1–14.
(4). Ma G.., Bavadekar S. A.., Davis Y. M.., Lalchandani S. G.., Nagmani R.., Schaneberg B. T.., Khan I. A.., Feller D. R. J.Pharmacol. Exp. Ther. 2007. 322:214–221.
(5). Fleming R. M.Expert Opin. Drug Saf. 2008. 7:749–759.
Article
(6). Stohs S. J.., Badmaev V.Phytother. Res. 2016. 30:732–740.
(7). Pittler M. H.., Schmidt K.., Ernst E.Obes. Rev. 2005. 6:93–111.
(8). Stohs S. J.Plast. Reconstr. Surg. 2013. 132:876e–877e.
(9). Aichner D.., Ganzera M.Talanta. 2015. 144:1239–1244.
(10). Wang H.., Song H.., Yue J.., Li J.., Hou Y. B.., Deng J. L.Cochrane Database Syst. Rev. 2012. CD008000.
(11). Papageorgiou V. P.., Assimopoulou A. N.., Ballis A. C.Curr. Med. Chem. 2008. 15:3248–3267.
(12). Hu Y.., Jiang Z.., Leung K. S.., Zhao Z.Anal. Chim. Acta. 2006. 577:26–31.
(13). Aslan, N; Cebeci Y.Fuel. 2007. 86:90–97.
(14). Schaneberg B. T.., Crockett S.., Bedir E.., Khan I. A.Phytochemistry. 2003. 62:911–918.
(15). Ichikawa M.., Udayama M.., Imamura K.., Shiraishi S.., Matsuura H.Chem. Pharm. Bull. 2003. 51:635–639.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr