Tuberc Respir Dis.  2017 Apr;80(2):187-193. 10.4046/trd.2017.80.2.187.

Predictive Factors for Switched EGFR-TKI Retreatment in Patients with EGFR-Mutant Non-Small Cell Lung Cancer

Affiliations
  • 1Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
  • 2Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea. jclee@amc.seoul.kr
  • 3Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
  • 4Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
  • 5Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Abstract

BACKGROUND
Third-generation tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKIs) have proved efficacious in treating non-small cell lung cancer (NSCLC) patients with acquired resistance resulting from the T790M mutation. However, since almost 50% patients with the acquired resistance do not harbor the T790M mutation, retreatment with first- or second-generation EGFR-TKIs may be a more viable therapeutic option. Here, we identified positive response predictors to retreatment, in patients who switched to a different EGFR-TKI, following initial treatment failure.
METHODS
This study retrospectively reviewed the medical records of 42 NSCLC patients with EGFR mutations, whose cancers had progressed following initial treatment with gefitinib or erlotinib, and who had switched to a different first-generation EGFR-TKI during subsequent retreatment. To identify high response rate predictors in the changed EGFR-TKI retreatment, we analyzed the relationship between clinical and demographic parameters, and positive clinical outcomes, following retreatment with EGFR-TKI.
RESULTS
Overall, 30 (71.4%) patients received gefitinib and 12 (28.6%) patients received erlotinib as their first EGFR-TKI treatment. Following retreatment with a different EGFR-TKI, the overall response and disease control rates were 21.4% and 64.3%, respectively. There was no significant association between their overall responses. The median progression-free survival (PFS) after retreatment was 2.0 months. However, PFS was significantly longer in patients whose time to progression was ≥10 months following initial EGFR-TKI treatment, who had a mutation of exon 19, or whose treatment interval was <90 days.
CONCLUSION
In patients with acquired resistance to initial EGFR-TKI therapy, switched EGFR-TKI retreatment may be a salvage therapy for individuals possessing positive retreatment response predictors.

Keyword

Carcinoma, Non-Small-Cell Lung; Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor; Retreatment; Predictive

MeSH Terms

Carcinoma, Non-Small-Cell Lung*
Disease-Free Survival
Erlotinib Hydrochloride
Exons
Humans
Medical Records
Protein-Tyrosine Kinases
Receptor, Epidermal Growth Factor
Retreatment*
Retrospective Studies
Salvage Therapy
Treatment Failure
Erlotinib Hydrochloride
Protein-Tyrosine Kinases
Receptor, Epidermal Growth Factor

Figure

  • Figure 1 (A) Progression-free survival of second epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) by time to progression (TTP). (B) Progression-free survival of second EGFR-TKI by interval duration. (C) Progression-free survival of second EGFR-TKI by EGFR mutation subtype.


Reference

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136:E359–E386.
2. Charloux A, Quoix E, Wolkove N, Small D, Pauli G, Kreisman H. The increasing incidence of lung adenocarcinoma: reality or artefact? A review of the epidemiology of lung adenocarcinoma. Int J Epidemiol. 1997; 26:14–23.
3. Park JY, Jang SH. Epidemiology of lung vancer in Korea: recent trends. Tuberc Respir Dis. 2016; 79:58–69.
4. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002; 346:92–98.
5. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009; 361:947–957.
6. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010; 362:2380–2388.
7. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011; 12:735–742.
8. Su KY, Chen HY, Li KC, Kuo ML, Yang JC, Chan WK, et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol. 2012; 30:433–440.
9. Vikis H, Sato M, James M, Wang D, Wang Y, Wang M, et al. EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity. Cancer Res. 2007; 67:4665–4670.
10. Kuang Y, Rogers A, Yeap BY, Wang L, Makrigiorgos M, Vetrand K, et al. Noninvasive detection of EGFR T790M in gefitinib or erlotinib resistant non-small cell lung cancer. Clin Cancer Res. 2009; 15:2630–2636.
11. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013; 19:2240–2247.
12. Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol. 2013; 31:3987–3996.
13. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012; 44:852–860.
14. Lee JC, Jang SH, Lee KY, Kim YC. Treatment of non-small cell lung carcinoma after failure of epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Res Treat. 2013; 45:79–85.
15. Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat. 2012; 44:151–156.
16. Lee DH, Kim SW, Suh C, Yoon DH, Yi EJ, Lee JS. Phase II study of erlotinib as a salvage treatment for non-small-cell lung cancer patients after failure of gefitinib treatment. Ann Oncol. 2008; 19:2039–2042.
17. Wong AS, Soong R, Seah SB, Lim SW, Chuah KL, Nga ME, et al. Evidence for disease control with erlotinib after gefitinib failure in typical gefitinib-sensitive Asian patients with non-small cell lung cancer. J Thorac Oncol. 2008; 3:400–404.
18. Cho BC, Im CK, Park MS, Kim SK, Chang J, Park JP, et al. Phase II study of erlotinib in advanced non-small-cell lung cancer after failure of gefitinib. J Clin Oncol. 2007; 25:2528–2533.
19. Becker A, Crombag L, Heideman DA, Thunnissen FB, van Wijk AW, Postmus PE, et al. Retreatment with erlotinib: regain of TKI sensitivity following a drug holiday for patients with NSCLC who initially responded to EGFR-TKI treatment. Eur J Cancer. 2011; 47:2603–2606.
20. Song Z, Yu X, He C, Zhang B, Zhang Y. Re-administration after the failure of gefitinib or erlotinib in patients with advanced non-small cell lung cancer. J Thorac Dis. 2013; 5:400–405.
21. Oh IJ, Ban HJ, Kim KS, Kim YC. Retreatment of gefitinib in patients with non-small-cell lung cancer who previously controlled to gefitinib: a single-arm, open-label, phase II study. Lung Cancer. 2012; 77:121–127.
22. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011; 3:75ra26.
23. Arcila ME, Oxnard GR, Nafa K, Riely GJ, Solomon SB, Zakowski MF, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011; 17:1169–1180.
24. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005; 352:786–792.
25. Yokouchi H, Yamazaki K, Kinoshita I, Konishi J, Asahina H, Sukoh N, et al. Clinical benefit of readministration of gefitinib for initial gefitinib-responders with non-small cell lung cancer. BMC Cancer. 2007; 7:51.
26. Costa DB, Nguyen KS, Cho BC, Sequist LV, Jackman DM, Riely GJ, et al. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin Cancer Res. 2008; 14:7060–7067.
27. Vasile E, Tibaldi C, Chella A, Falcone A. Erlotinib after failure of gefitinib in patients with advanced non-small cell lung cancer previously responding to gefitinib. J Thorac Oncol. 2008; 3:912–914.
28. Hata A, Katakami N, Yoshioka H, Fujita S, Kunimasa K, Nanjo S, et al. Erlotinib after gefitinib failure in relapsed non-small cell lung cancer: clinical benefit with optimal patient selection. Lung Cancer. 2011; 74:268–273.
29. Li J, Hao X, Wang Y, Zhang X, Shi Y. Clinical response to gefitinib retreatment of lung adenocarcinoma patients who benefited from an initial gefitinib therapy: a retrospective analysis. Zhongguo Fei Ai Za Zhi. 2012; 15:44–48.
30. Tomizawa Y, Fujita Y, Tamura A, Shirai M, Shibata S, Kawabata T, et al. Effect of gefitinib re-challenge to initial gefitinib responder with non-small cell lung cancer followed by chemotherapy. Lung Cancer. 2010; 68:269–272.
31. Zwitter M, Rajer M, Stanic K, Vrankar M, Doma A, Cuderman A, et al. Intercalated chemotherapy and erlotinib for non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations. Cancer Biol Ther. 2016; 17:833–839.
32. Tang C, Li X, Guo W, Li J, Qin H, Wang W, et al. How to make the choice in the retreatment of EGFR-TKI for advanced NSCLC patients who benefited from prior gefitinib therapy: the original drug or switching to a second EGFR-TKI? Zhongguo Fei Ai Za Zhi. 2013; 16:345–352.
33. An T, Huang Z, Wang Y, Wang Z, Bai H, Wang J. Retreatment with epidermal growth factor receptor inhibitor after initial failure in advanced non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2011; 14:261–265.
34. Xia GH, Zeng Y, Fang Y, Yu SR, Wang L, Shi MQ, et al. Effect of EGFR-TKI retreatment following chemotherapy for advanced non-small cell lung cancer patients who underwent EGFR-TKI. Cancer Biol Med. 2014; 11:270–276.
35. Chin TM, Quinlan MP, Singh A, Sequist LV, Lynch TJ, Haber DA, et al. Reduced Erlotinib sensitivity of epidermal growth factor receptor-mutant non-small cell lung cancer following cisplatin exposure: a cell culture model of second-line erlotinib treatment. Clin Cancer Res. 2008; 14:6867–6876.
36. Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, et al. NCCN guidelines insights: non-small cell lung cancer, version 4.2016. J Natl Compr Canc Netw. 2016; 14:255–264.
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr