J Breast Cancer.  2013 Mar;16(1):1-11.

Potential Applications of Quantum Dots in Mapping Sentinel Lymph Node and Detection of Micrometastases in Breast Carcinoma

Affiliations
  • 1Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India. ferozalam97@gmail.com

Abstract

Breast cancer cure aims at complete elimination of malignant cells and essentially requires detection and treatment of any micrometastases. Here, we present a review of the current methods in use and the potential role of the quantum dots (QDs) in detection and visualization of sentinel lymph node and micrometastases in breast cancer patients. The traditional histopathological, immunohistochemical, and reverse transcriptase polymerase chain reaction procedures being used for micrometastases detection had serious drawbacks of high false negativity, specificity variations and false positivity of the results. Photon emission fluorescence multiplexing characteristics of the quantum dots make them potentially ideal probes for studying the dynamics of cellular processes over time such as continuous tracking of cell migration, differentiation, and metastases. In breast cancer, QDs based molecular and genomic detections had an unparallel high sensitivity and specificity.

Keyword

Breast neoplasms; Early detection of cancer; Neoplasm micrometastasis; Quantum dots; Sentinel lymph node

MeSH Terms

Breast
Breast Neoplasms
Cell Movement
Early Detection of Cancer
Fluorescence
Humans
Lymph Nodes
Neoplasm Metastasis
Neoplasm Micrometastasis
Nitriles
Pyrethrins
Quantum Dots
Reverse Transcriptase Polymerase Chain Reaction
Sensitivity and Specificity
Track and Field
Nitriles
Pyrethrins

Reference

1. Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM, et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst. 2006; 98:599–609. PMID: 16670385.
Article
2. Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res. 2006; 8:212. PMID: 16887003.
Article
3. Meric F, Mirza NQ, Vlastos G, Buchholz TA, Kuerer HM, Babiera GV, et al. Positive surgical margins and ipsilateral breast tumor recurrence predict disease-specific survival after breast-conserving therapy. Cancer. 2003; 97:926–933. PMID: 12569592.
Article
4. Sienel W, Stremmel C, Kirschbaum A, Hinterberger L, Stoelben E, Hasse J, et al. Frequency of local recurrence following segmentectomy of stage IA non-small cell lung cancer is influenced by segment localisation and width of resection margins: implications for patient selection for segmentectomy. Eur J Cardiothorac Surg. 2007; 31:522–527. PMID: 17229574.
5. Karni T, Pappo I, Sandbank J, Lavon O, Kent V, Spector R, et al. A device for real-time, intraoperative margin assessment in breast-conservation surgery. Am J Surg. 2007; 194:467–473. PMID: 17826057.
Article
6. Neoptolemos JP, Stocken DD, Dunn JA, Almond J, Beger HG, Pederzoli P, et al. Influence of resection margins on survival for patients with pancreatic cancer treated by adjuvant chemoradiation and/or chemotherapy in the ESPAC-1 randomized controlled trial. Ann Surg. 2001; 234:758–768. PMID: 11729382.
Article
7. Pantel K, Otte M. Occult micrometastasis: enrichment, identification and characterization of single disseminated tumour cells. Semin Cancer Biol. 2001; 11:327–337. PMID: 11562175.
Article
8. Pantel K, Alix-Panabières C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009; 6:339–351. PMID: 19399023.
Article
9. Braun S, Kentenich C, Janni W, Hepp F, de Waal J, Willgeroth F, et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol. 2000; 18:80–86. PMID: 10623696.
10. Kruger WH, Kröger N, Tögel F, Renges H, Badbaran A, Hornung R, et al. Disseminated breast cancer cells prior to and after high-dose therapy. J Hematother Stem Cell Res. 2001; 10:681–689. PMID: 11672515.
11. Sobin LH, Hermanek P, Hutter RV. TNM classification of malignant tumors. A comparison between the new (1987) and the old editions. Cancer. 1988; 61:2310–2314. PMID: 3284634.
Article
12. Mittendorf EA, Hunt KK. Significance and management of micrometastases in patients with breast cancer. Expert Rev Anticancer Ther. 2007; 7:1451–1461. PMID: 17944569.
Article
13. Schwartz GF, Giuliano AE, Veronesi U. Consensus Conference Committee. Proceedings of the consensus conference on the role of sentinel lymph node biopsy in carcinoma of the breast, April 19-22, 2001, Philadelphia, Pennsylvania. Cancer. 2002; 94:2542–2551. PMID: 12173319.
Article
14. Lyman GH, Giuliano AE, Somerfield MR, Benson AB 3rd, Bodurka DC, Burstein HJ, et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol. 2005; 23:7703–7720. PMID: 16157938.
Article
15. Kosaka N, McCann TE, Mitsunaga M, Choyke PL, Kobayashi H. Real-time optical imaging using quantum dot and related nanocrystals. Nanomedicine (Lond). 2010; 5:765–776. PMID: 20662647.
Article
16. Fisher B, Bauer M, Wickerham DL, Redmond CK, Fisher ER, Cruz AB, et al. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update. Cancer. 1983; 52:1551–1557. PMID: 6352003.
Article
17. Kahn HJ, Hanna WM, Chapman JA, Trudeau ME, Lickley HL, Mobbs BG, et al. Biological significance of occult micrometastases in histologically negative axillary lymph nodes in breast cancer patients using the recent American Joint Committee on Cancer breast cancer staging system. Breast J. 2006; 12:294–301. PMID: 16848838.
Article
18. Gusterson BA, Ott R, Anderson TJ, Galea MH, Elston CW, Blamey RW. Occult axillary lymph-node micrometastases in breast cancer. Lancet. 1990; 336:434–435. PMID: 1974958.
Article
19. Neville AM. Breast cancer micrometastases in lymph nodes and bone marrow are prognostically important. Ann Oncol. 1991; 2:13–14. PMID: 2009231.
Article
20. Gebauer G, Fehm T, Merkle E, Beck EP, Lang N, Jäger W. Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol. 2001; 19:3669–3674. PMID: 11504748.
Article
21. Landys K, Persson S, Kovarík J, Hultborn R, Holmberg E. Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res Treat. 1998; 49:27–33. PMID: 9694608.
Article
22. Gerber B, Krause A, Müller H, Richter D, Reimer T, Makovitzky J, et al. Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J Clin Oncol. 2001; 19:960–971. PMID: 11181658.
23. Mahmoud W, Sukhanova A, Oleinikov V, Rakovich YP, Donegan JF, Pluot M, et al. Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection. Proteomics. 2010; 10:700–716. PMID: 19953553.
Article
24. Schwartz GF, Giuliano AE, Veronesi U. Consensus Conference Committee. Proceedings of the consensus conference on the role of sentinel lymph node biopsy in carcinoma of the breast April 19 to 22, 2001, Philadelphia, Pennsylvania. Hum Pathol. 2002; 33:579–589. PMID: 12152156.
Article
25. Pathology reporting of breast disease. 2005. Accessed June 13th, 2012. NHS Cancer Screening Programmes, The Royal College of Pathologists;http://www.cancerscreening.nhs.uk/breastscreen/publications/nhsbsp58-low-resolution.pdf.
26. Wells CA. Perry N, Broeders M, Wolf C, Tornberg S, Holland R, Karsa LV, editors. Open biopsy and resection specimens. European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. 2006. 4th ed. Luxembourg: Office for Official Publications of the European Communities;p. 257–266.
27. Kuehn T, Bembenek A, Decker T, Munz DL, Sautter-Bihl ML, Untch M, et al. A concept for the clinical implementation of sentinel lymph node biopsy in patients with breast carcinoma with special regard to quality assurance. Cancer. 2005; 103:451–461. PMID: 15611971.
Article
28. Meyer JS. Sentinel lymph node biopsy: strategies for pathologic examination of the specimen. J Surg Oncol. 1998; 69:212–218. PMID: 9881937.
Article
29. Treseler P. Pathologic examination of the sentinel lymph node: what is the best method? Breast J. 2006; 12(5 Suppl 2):S143–S151. PMID: 16958994.
Article
30. Millis RR, Springall R, Lee AH, Ryder K, Rytina ER, Fentiman IS. Occult axillary lymph node metastases are of no prognostic significance in breast cancer. Br J Cancer. 2002; 86:396–401. PMID: 11875706.
Article
31. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G, et al. Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res. 2005; 11:8006–8014. PMID: 16299229.
Article
32. Borgen E, Beiske K, Trachsel S, Nesland JM, Kvalheim G, Herstad TK, et al. Immunocytochemical detection of isolated epithelial cells in bone marrow: non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J Pathol. 1998; 185:427–434. PMID: 9828843.
Article
33. Braun S, Pantel K. Micrometastatic bone marrow involvement: detection and prognostic significance. Med Oncol. 1999; 16:154–165. PMID: 10523795.
Article
34. Noguchi S, Aihara T, Motomura K, Inaji H, Imaoka S, Koyama H. Detection of breast cancer micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Comparison between MUC1 mRNA and keratin 19 mRNA amplification. Am J Pathol. 1996; 148:649–656. PMID: 8579127.
35. Masuda N, Tamaki Y, Sakita I, Ooka M, Ohnishi T, Kadota M, et al. Clinical significance of micrometastases in axillary lymph nodes assessed by reverse transcription-polymerase chain reaction in breast cancer patients. Clin Cancer Res. 2000; 6:4176–4185. PMID: 11106229.
36. Gillanders WE, Mikhitarian K, Hebert R, Mauldin PD, Palesch Y, Walters C, et al. Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: an interim analysis of a prospective multi-institutional cohort study. Ann Surg. 2004; 239:828–837. PMID: 15166962.
37. Viale G, Dell'Orto P, Biasi MO, Stufano V, De Brito Lima LN, Paganelli G, et al. Comparative evaluation of an extensive histopathologic examination and a real-time reverse-transcription-polymerase chain reaction assay for mammaglobin and cytokeratin 19 on axillary sentinel lymph nodes of breast carcinoma patients. Ann Surg. 2008; 247:136–142. PMID: 18156933.
Article
38. Visser M, Jiwa M, Horstman A, Brink AA, Pol RP, van Diest P, et al. Intra-operative rapid diagnostic method based on CK19 mRNA expression for the detection of lymph node metastases in breast cancer. Int J Cancer. 2008; 122:2562–2567. PMID: 18324628.
Article
39. Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol. 2004; 5:79–88. PMID: 14761811.
Article
40. Balducci E, Azzarello G, Valori L, Toffolatti L, Bolgan L, Valenti MT, et al. A new nested primer pair improves the specificity of CK-19 mRNA detection by RT-PCR in occult breast cancer cells. Int J Biol Markers. 2005; 20:28–33. PMID: 15832770.
Article
41. von Burstin J, Eser S, Seidler B, Meining A, Bajbouj M, Mages J, et al. Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int J Cancer. 2008; 123:2138–2147. PMID: 18709639.
Article
42. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine (Lond). 2006; 1:209–217. PMID: 17716110.
Article
43. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008; 60:1226–1240. PMID: 18495291.
Article
44. Peng CW, Li Y. Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater. 2010; 2010:Article ID 676839.
Article
45. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007; 9:257–288. PMID: 17439359.
Article
46. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol. 2006; 19:1181–1191. PMID: 16778828.
Article
47. Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003; 7:626–634. PMID: 14580568.
Article
48. Zdobnova TA, Lebedenko EN, Deyev Scapital Em C. Quantum dots for molecular diagnostics of tumors. Acta Naturae. 2011; 3:29–47. PMID: 22649672.
Article
49. Yezhelyev MV, Al-Hajj A, Morris C, Marcus AI, Liu T, Lewis M, et al. In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots. Adv Mater. 2007; 19:3146–3151.
Article
50. Ko MH, Kim S, Kang WJ, Lee JH, Kang H, Moon SH, et al. In vitro derby imaging of cancer biomarkers using quantum dots. Small. 2009; 5:1207–1212. PMID: 19235198.
Article
51. Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD, et al. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials. 2009; 30:2912–2918. PMID: 19251316.
Article
52. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol. 2004; 22:198–203. PMID: 14704683.
Article
53. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003; 21:41–46. PMID: 12459735.
Article
54. Jan E, Byrne SJ, Cuddihy M, Davies AM, Volkov Y, Gun'ko YK, et al. High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticles. ACS Nano. 2008; 2:928–938. PMID: 19206490.
Article
55. Yezhelyev MV, Qi L, O'Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc. 2008; 130:9006–9012. PMID: 18570415.
Article
56. Shi C, Zhu Y, Cerwinka WH, Zhau HE, Marshall FF, Simons JW, et al. Quantum dots: emerging applications in urologic oncology. Urol Oncol. 2008; 26:86–92. PMID: 18190836.
Article
57. Xiao Y, Telford WG, Ball JC, Locascio LE, Barker PE. Semiconductor nanocrystal conjugates, FISH and pH. Nat Methods. 2005; 2:723. PMID: 16179915.
Article
58. Xu H, Sha MY, Wong EY, Uphoff J, Xu Y, Treadway JA, et al. Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 2003; 31:e43. PMID: 12682378.
59. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006; 7:131–142. PMID: 16493418.
Article
60. Zhang CY, Johnson LW. Quantifying RNA-peptide interaction by single-quantum dot-based nanosensor: an approach for drug screening. Anal Chem. 2007; 79:7775–7781. PMID: 17877365.
Article
61. Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007; 28:1565–1571. PMID: 17161865.
Article
62. Murasawa S, Kawamoto A, Horii M, Nakamori S, Asahara T. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. Arterioscler Thromb Vasc Biol. 2005; 25:1388–1394. PMID: 15860746.
Article
63. Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med. 2004; 10:993–998. PMID: 15334072.
Article
64. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004; 22:93–97. PMID: 14661026.
Article
65. Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg. 2005; 79:269–277. PMID: 15620956.
Article
66. Noh YW, Lim YT, Chung BH. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J. 2008; 22:3908–3918. PMID: 18682573.
Article
67. Tada H, Higuchi H, Wanatabe TM, Ohuchi N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 2007; 67:1138–1144. PMID: 17283148.
Article
68. So MK, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006; 24:339–343. PMID: 16501578.
Article
69. Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, et al. Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small. 2010; 6:256–261. PMID: 19911392.
Article
70. Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Chen FF, Drummond DC, Kirpotin DB, et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 2008; 8:2851–2857. PMID: 18712930.
Article
71. Harbeck N, Thomssen C. A new look at node-negative breast cancer. Oncologist. 2011; 16(Suppl 1):51–60. PMID: 21278441.
Article
72. Wang Y, Zhang Y, Du Z, Wu M, Zhang G. Detection of micrometastases in lung cancer with magnetic nanoparticles and quantum dots. Int J Nanomedicine. 2012; 7:2315–2324. PMID: 22661888.
73. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect. 2006; 114:165–172. PMID: 16451849.
Article
Full Text Links
  • JBC
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr