J Korean Med Sci.  2016 Jun;31(6):972-975. 10.3346/jkms.2016.31.6.972.

Bone Mineral Density and Prevalence of Osteoporosis in Postmenopausal Korean Women with Low-Energy Distal Radius Fractures

Affiliations
  • 1Department of Orthopaedic Surgery, Asan Medical Center, School of Medicine, University of Ulsan, Seoul, Korea. jeonchoi@gmail.com
  • 2Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea.

Abstract

The aim of this study was to evaluate the bone mineral density and the prevalence of osteoporosis in postmenopausal Korean women with low-energy distal radius fractures and compared with those of aged-matched normal Korean women. Two hundred and six patients with distal radius fractures between March 2006 and March 2010 were included in this study. Patients were divided into three groups by age; group 1 (50-59 years), group 2 (60-69 years), and group 3 (70-79 years). Controls were age-matched normal Korean women. The bone mineral density values at all measured sites, except for the spine, were significantly lower in group 1 than those of control. While the bone mineral density values in group 2 and 3 were lower than those of controls, these differences were not statistically significant. All groups had significantly higher prevalence of osteoporosis at the Ward's triangle; however, at the spine, femoral neck and trochanteric area it was not significantly different from those of age-matched controls. Although the prevalence of osteoporosis of the postmenopausal women with low-energy distal radius fractures may not be higher than that of the control, osteoporosis should be evaluated especially in younger postmenopausal patients to prevent other osteoporotic hip and/or spine fractures.

Keyword

Osteoporosis; Distal Radius Fracture; Post-Menopausal Women; Prevalence

MeSH Terms

Aged
Body Mass Index
Bone Density
Female
Femoral Neck Fractures/diagnosis
Humans
Middle Aged
Osteoporosis/*epidemiology
Postmenopause
Prevalence
Radius Fractures/*diagnosis
Republic of Korea/epidemiology
Retrospective Studies
Spinal Fractures/diagnosis

Cited by  1 articles

Evaluation and Management of Osteoporosis and Sarcopenia in Patients with Distal Radius Fractures
Gajendra Mani Shah, Hyun Sik Gong, Young Ju Chae, Yeun Soo Kim, Jihyeung Kim, Goo Hyun Baek
Clin Orthop Surg. 2020;12(1):9-21.    doi: 10.4055/cios.2020.12.1.9.


Reference

1. Chung KC, Shauver MJ, Birkmeyer JD. Trends in the United States in the treatment of distal radial fractures in the elderly. J Bone Joint Surg Am. 2009; 91:1868–1873.
2. Kanterewicz E, Yañez A, Pérez-Pons A, Codony I, Del Rio L, Díez-Pérez A. Association between Colles’ fracture and low bone mass: age-based differences in postmenopausal women. Osteoporos Int. 2002; 13:824–828.
3. Oyen J, Brudvik C, Gjesdal CG, Tell GS, Lie SA, Hove LM. Osteoporosis as a risk factor for distal radial fractures: a case-control study. J Bone Joint Surg Am. 2011; 93:348–356.
4. Sosa M, Saavedra P, Gómez-Alonso C, Mosquera J, Torrijos A, Muñoz-Torres M, Valero Díaz de la Madrid C, Díaz Curiel M, Martínez Díaz Guerra G, Pérez-Cano R, et al. Postmenopausal women with Colles’ fracture have bone mineral density values similar to those of controls when measured with calcaneus quantitative ultrasound. Eur J Intern Med. 2005; 16:561–566.
5. Lee JO, Chung MS, Baek GH, Oh JH, Lee YH, Gong HS. Age- and site-related bone mineral densities in Korean women with a distal radius fracture compared with the reference Korean female population. J Hand Surg Am. 2010; 35:1435–1441.
6. Cui LH, Choi JS, Shin MH, Kweon SS, Park KS, Lee YH, Nam HS, Jeong SK, Im JS. Prevalence of osteoporosis and reference data for lumbar spine and hip bone mineral density in a Korean population. J Bone Miner Metab. 2008; 26:609–617.
7. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004; 35:375–382.
8. Mallmin H, Ljunghall S, Persson I, Naessén T, Krusemo UB, Bergström R. Fracture of the distal forearm as a forecaster of subsequent hip fracture: a population-based cohort study with 24 years of follow-up. Calcif Tissue Int. 1993; 52:269–272.
9. Earnshaw SA, Cawte SA, Worley A, Hosking DJ. Colles’ fracture of the wrist as an indicator of underlying osteoporosis in postmenopausal women: a prospective study of bone mineral density and bone turnover rate. Osteoporos Int. 1998; 8:53–60.
10. Rozental TD, Makhni EC, Day CS, Bouxsein ML. Improving evaluation and treatment for osteoporosis following distal radial fractures. A prospective randomized intervention. J Bone Joint Surg Am. 2008; 90:953–961.
11. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994; 9:1137–1141.
12. Lewiecki EM, Kendler DL, Kiebzak GM, Schmeer P, Prince RL, El-Hajj Fuleihan G, Hans D. Special report on the official positions of the International Society for Clinical Densitometry. Osteoporos Int. 2004; 15:779–784.
13. Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000; 11:192–202.
14. Itoh S, Ohta T, Samejima H, Shinomiya K. Bone mineral density in the distal radius in a healthy Japanese population and in relation to fractures of the distal radius. J Hand Surg [Br]. 1999; 24:334–337.
15. Gong HS, Oh WS, Chung MS, Oh JH, Lee YH, Baek GH. Patients with wrist fractures are less likely to be evaluated and managed for osteoporosis. J Bone Joint Surg Am. 2009; 91:2376–2380.
16. Löfman O, Hallberg I, Berglund K, Wahlström O, Kartous L, Rosenqvist AM, Larsson L, Toss G. Women with low-energy fracture should be investigated for osteoporosis. Acta Orthop. 2007; 78:813–821.
17. Lashin H, Davie MW. DXA scanning in women over 50 years with distal forearm fracture shows osteoporosis is infrequent until age 65 years. Int J Clin Pract. 2008; 62:388–393.
18. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD. Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res. 1997; 12:683–690.
19. Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, Nevitt MC, Fox KM, Cummings SR. Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res. 1995; 10:1778–1787.
20. Sorenson JA, Cameron JR. A reliable in vivo measurement of bone-mineral content. J Bone Joint Surg Am. 1967; 49:481–497.
21. Clayton RA, Gaston MS, Ralston SH, Court-Brown CM, McQueen MM. Association between decreased bone mineral density and severity of distal radial fractures. J Bone Joint Surg Am. 2009; 91:613–619.
22. Johnell O, Kanis JA, Odén A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jönsson B. Mortality after osteoporotic fractures. Osteoporos Int. 2004; 15:38–42.
Full Text Links
  • JKMS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr