Korean J Crit Care Med.  2016 Nov;31(4):308-316. 10.4266/kjccm.2015.00703.

High-dose Sulbactam Treatment for Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter Baumannii

Affiliations
  • 1Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea. sjoongkwon@hanmail.net

Abstract

BACKGROUND
Several antibiotics can be used to treat ventilator-associated pneumonia caused by carbapenem-resistant A. baumannii (CRAB-VAP) including high-dose sulbactam. However, the effectiveness of high-dose sulbactam therapy is not well known. We report our experience with high-dose sulbactam for treatment of CRAB-VAP.
METHODS
Medical records of patients with CRAB-VAP who were given high-dose sulbactam between May 2013 and June 2015 were reviewed.
RESULTS
Fifty-eight patients with CRAB-VAP were treated with high-dose sulbactam. The mean age was 72.0 ± 15.2 years, and the acute physiology and chronic health evaluation II (APACHE II) score was 15.1 ± 5.10 at the time of CRAB-VAP diagnosis. Early clinical improvement was observed in 65.5% of patients, and 30-day mortality was 29.3%. Early clinical failure (odds ratio [OR]: 8.720, confidence interval [CI]: 1.346-56.484; p = 0.023) and APACHE II score ≥ 14 at CRAB-VAP diagnosis (OR: 10.934, CI: 1.047-114.148; p = 0.046) were associated with 30-day mortality.
CONCLUSIONS
High-dose sulbactam therapy may be effective for the treatment of CRAB-VAP. However, early clinical failure was observed in 35% of patients and was associated with poor outcome.

Keyword

acinetobacter; pneumonia, ventilator-associated; sulbactam

MeSH Terms

Acinetobacter baumannii*
Acinetobacter*
Anti-Bacterial Agents
APACHE
Diagnosis
Humans
Medical Records
Mortality
Pneumonia, Ventilator-Associated*
Sulbactam*
Anti-Bacterial Agents
Sulbactam

Reference

References

1. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007; 5:939–51.
Article
2. Lortholary O, Fagon JY, Hoy AB, Slama MA, Pierre J, Giral P, et al. Nosocomial acquisition of multiresistant Acinetobacter baumannii: risk factors and prognosis. Clin Infect Dis. 1995; 20:790–6.
Article
3. Jawad A, Heritage J, Snelling AM, Gascoyne-Binzi DM, Hawkey PM. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol. 1996; 34:2881–7.
Article
4. Fournier PE, Richet H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006; 42:692–9.
Article
5. Castanheira M, Mendes RE, Jones RN. Update on Acinetobacter species: mechanisms of antimicrobial resistance and contemporary in vitro activity of minocycline and other treatment options. Clin Infect Dis. 2014; 59(Suppl 6):S367–73.
Article
6. Halstead DC, Abid J, Dowzicky MJ. Antimicrobial susceptibility among Acinetobacter calcoaceticus-baumannii complex and Enterobacteriaceae collected as part of the Tigecycline Evaluation and Surveillance Trial. J Infect. 2007; 55:49–57.
Article
7. Karageorgopoulos DE, Kelesidis T, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrugresistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence. J Antimicrob Chemother. 2008; 62:45–55.
Article
8. Kumazawa J, Yagisawa M J. The history of antibiotics: the Japanese story. Infect Chemother. 2002; 8:125–33.
Article
9. Pogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis. 2011; 53:879–84.
Article
10. Rocco M, Montini L, Alessandri E, Venditti M, Laderchi A, De Pascale G, et al. Risk factors for acute kidney injury in critically ill patients receiving high intravenous doses of colistin methanesulfonate and/or other nephrotoxic antibiotics: a retrospective cohort study. Crit Care. 2013; 17:R174.
Article
11. Traub WH, Spohr M. Antimicrobial drug susceptibility of clinical isolates of Acinetobacter species (A. baumannii, A. haemolyticus, genospecies 3, and genospecies 6). Antimicrob Agents Chemother. 1989; 33:1617–9.
Article
12. Vila J, Marcos A, Marco F, Abdalla S, Vergara Y, Reig R, et al. In vitro antimicrobial production of beta-lactamases, aminoglycoside-modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 1993; 37:138–41.
Article
13. Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis. 2010; 51:79–84.
14. Jellison TK, Mckinnon PS, Rybak MJ. Epidemiology, resistance, and outcomes of Acinetobacter baumannii bacteremia treated with imipenem-cilastatin or ampicillin-sulbactam. Pharmacotherapy. 2001; 21:142–8.
15. Henwood CJ, Gatward T, Warner M, James D, Stockdale MW, Spence RP, et al. Antibiotic resistance among clinical isolates of Acinetobacter in the UK, and in vitro evaluation of tigecycline (GAR-936). J Antimicrob Chemother. 2002; 49:479–87.
Article
16. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985; 13:818–29.
17. Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991; 143(5 Pt 1):1121–9.
Article
18. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996; 22:707–10.
19. Bou G, Otero FM, Santiso R, Tamayo M, Fernández Mdel C, Tomás M, et al. Fast assessment of resistance to carbapenems and ciprofloxacin of clinical strains of Acinetobacter baumannii. J Clin Microbiol. 2012; 50:3609–13.
Article
20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150:604–12.
Article
21. Franklin R, Cockerill III. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement M100-S21. Wayne: Clinical and Laboratory Standards Institute;2011.
22. Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J Infect. 2008; 56:432–6.
Article
23. Betrosian AP, Frantzeskaki F, Xanthaki A, Georgiadis G. High-dose ampicillin sulbactam as an alternative treatment of late-onset VAP from multidrug-resistant Acinetobacter baumannii. Scand J Infect Dis. 2007; 39:38–43.
24. Wood GC, Hanes SD, Croce MA, Fabian TC, Boucher BA. Comparison of ampicillin-sulbactam and imipenem-cilastatin for the treatment of acinetobacter ventilator-associated pneumonia. Clin Infect Dis. 2002; 34:1425–30.
25. Levin AS, Levy CE, Manrique AE, Medeiros EA, Costa SF. Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int J Antimicrob Agents. 2003; 21:58–62.
Article
26. Kim WY, Moon JY, Huh JW, Choi SH, Lim CM, Koh Y, et al. Comparable efficacy of tigecycline versus colistin therapy for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii pneumonia in critically ill patients. PLoS One. 2016; 11:e0150642.
Article
27. Durante-Mangoni E, Signoriello G, Andini R, Mattei A, De Cristoforo M, Murino P, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis. 2013; 57:349–58.
Article
28. Abdellatif S, Trifi A, Daly F, Mahjoub K, Nasri R, Ben Lakhal S. Efficacy and toxicity of aerosolized colistin in ventilator-associated pneumonia: a prospective, randomized trial. Ann Intensive Care. 2016; 6:26.
Article
29. Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jimé- nez FJ, Barrero-Almodóvar AE, García-Garmendia JL, Bernabeu-Wittell M, et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis. 2003; 36:1111–8.
30. Esperatti M, Ferrer M, Giunta V, Ranzani OT, Saucedo LM, Li Bassi G, et al. Validation of predictors of adverse outcomes in hospital-acquired pneumonia in the ICU. Crit Care Med. 2013; 41:2151–61.
Article
31. Chan JD, Graves JA, Dellit TH. Antimicrobial treatment and clinical outcomes of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. J Intensive Care Med. 2010; 25:343–8.
Article
Full Text Links
  • KJCCM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr