1. Drance S, Anderson DR, Schulzer M; Collaborative Normal- Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
Article
2. Grødum K, Heijl A, Bengtsson B.Refractive error and glaucoma. Acta Ophthalmol Scand. 2001; 79:560–6.
Article
3. Nakagami T, Yamazaki Y, Hayamizu F. Prognostic factors for pro-gression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2006; 50:38–43.
Article
4. Ramli N, Nurull BS, Hairi NN, Mimiwati Z. Low nocturnal ocular perfusion pressure as a risk factor for normal tension glaucoma. Prev Med. 2013; 57(Suppl):S47–9.
Article
5. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005; 31:146–55.
6. Whitacre MM, Stein R. Sources of error with use of Goldmann- type tonometers. Surv Ophthalmol. 1993; 38:1–30.
7. Francis BA, Hsieh A, Lai MY. . Effects of corneal thickness, corneal curvature, and intraocular pressure level on Goldmann ap-planation tonometry and dynamic contour tonometry. Ophthalmology. 2007; 114:20–6.
Article
8. Choi HJ, Kim DM, Hwang SS. Relationship between central cor-neal thickness and localized retinal nerve fiber layer defect in nor-mal-tension glaucoma. J Glaucoma. 2006; 15:120–3.
Article
9. Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hy-pertension, primary open-angle glaucoma, and normal tension glaucoma. Arch Ophthalmol. 1999; 117:14–6.
Article
10. Herndon LW, Weizer JS, Stinnett SS. Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol. 2004; 122:17–21.
Article
11. Medeiros FA, Sample PA, Zangwill LM. . Corneal thickness as a risk factor for visual field loss in patients with preperimetric glau-comatous optic neuropathy. Am J Ophthalmol. 2003; 136:805–13.
Article
12. Congdon NG, Broman AT, Bandeen-Roche K. . Central cor-neal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006; 141:868–75.
Article
13. De Moraes CV, Hill V, Tello C. . Lower corneal hysteresis is as-sociated with more rapid glaucomatous visual field progression. J Glaucoma. 2012; 21:209–13.
Article
14. Medeiros FA, Meira-Freitas D, Lisboa R. . Corneal hysteresis as a risk factor for glaucoma progression: a prospective longi-tudinal study. Ophthalmology. 2013; 120:1533–40.
Article
15. Nah YS, Seong GJ, Kim CY. Visual function and quality of life in Korean patients with glaucoma. Korean J Ophthalmol. 2002; 16:70–4.
Article
16. Araie M, Yamagami J, Suziki Y. Visual field defects in normal-tension and high-tension glaucoma. Ophthalmology. 1993; 100:1808–14.
Article
17. Koseki N, Araie M, Suzuki Y, Yamagami J. Visual field damage proximal to fixation in normal- and high-tension glaucoma eyes. Jpn J Ophthalmol. 1995; 39:274–83.
18. Ahrlich KG, De Moraes CG, Teng CC. . Visual field pro-gression differences between normal-tension and exfoliative high- tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1458–63.
19. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31:156–62.
Article
20. Sullivan-Mee M, Billingsley SC, Patel AD. . Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci. 2008; 85:463–70.
Article
21. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response an-alyser to assess hysteresis and corneal resistance factor in low ten-sion, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol. 2008; 36:508–13.
Article
22. Argus WA. Ocular hypertension and central corneal thickness. Ophthalmology. 1995; 102:1810–2.
Article
23. Kirwan C, O'Keefe M, Lanigan B.Corneal hysteresis and intra-ocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006; 142:990–2.
Article
24. Kolker AE. Visual prognosis in advanced glaucoma: a comparison of medical and surgical therapy for retention of vision in 101 eyes with advanced glaucoma. Trans Am Ophthalmol Soc. 1977; 75:539–55.
25. Park SC, De Moraes CG, Teng CC. . Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics. Ophthalmology. 2011; 118:1782–9.
Article
26. Kang JW, Park B, Cho BJ. Comparison of risk factors for initial central scotoma versus initial peripheral scotoma in normal-tension glaucoma. Korean J Ophthalmol. 2015; 29:102–8.
Article
27. Cho HK, Lee J, Lee M, Kee C. Initial central scotomas vs periph-eral scotomas in normal-tension glaucoma: clinical characteristics and progression rates. Eye (Lond). 2014; 28:303–11.
Article
28. Chihara E, Tanihara H. Parameters associated with papillomacular bundle defects in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:511–7.
Article
29. Chihara E, Sawada A. Atypical nerve fiber layer defects in high myopes with high-tension glaucoma. Arch Ophthalmol. 1990; 108:228–32.
Article
30. Chihara E, Honda Y. Multiple defects in the retinal nerve fiber layer in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1992; 230:201–5.
Article
31. Kimura Y, Hangai M, Morooka S. . Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Invest Ophthalmol Vis Sci. 2012; 53:6472–8.
Article
32. Ohno-Matsui K, Shimada N, Yasuzumi K. . Long-term devel-opment of significant visual field defects in highly myopic eyes. Am J Ophthalmol. 2011; 152:256–65.e1.
Article
33. Kang BW, Ji YS, Park SW. Analysis of factors related of location of initial visual field defect in normal tension glaucoma. J Korean Ophthalmol Soc. 2011; 52:1478–84.
Article