1. Kim CS, Seong GJ, Lee NH, Song KC. Namil Study Group Korean Glaucoma Society. Prevalence of primary open-angle Glaucoma in central South Korea: the Namil study. Ophthalmology. 2011; 118:1024–30.
2. Araie M, Sekine M, Suzuki Y, Koseki N. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology. 1994; 101:1440–4.
Article
3. Drance S, Anderson DR, Schulzer M. Collaborative Normal- Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001; 131:699–708.
4. Daugeliene L, Yamamoto T, Kitazawa Y. Risk factors for visual field damage progression in normal-tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol. 1999; 237:105–8.
Article
5. Alward WL, Frederick F, Cashwell LF, et al. Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucom- atous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998; 126:487–97.
6. Nakagami T, Yamazaki Y, Hayamizu F. Prognostic factors for pro- gression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol. 2006; 50:38–43.
7. Kim NJ, Lee SM, Park KH, Kim DM. Factors associated with pro- gression of visual field defect in normal tension glaucoma. J Korean Ophthalmol Soc. 2003; 44:1351–5.
8. Han ES, Kim MJ, Park KH. The relationship between intraocular pressure and visual field defect progression in normal-tension glaucoma. J Korean Ophthalmol Soc. 2009; 50:1548–54.
Article
9. Yim JH, Park SC, Kee CW. Evaluation of ocular risk factors related to asymmetric visual field defects in normal tension glaucoma. J Korean Ophthalmol Soc. 2008; 49:1507–14.
Article
10. Kim SH, Park KH. Comparison of clinical characteristics and pro- gression of glaucoma between recurrent and non-recurrent optic disc hemorrhage. J Korean Ophthalmol Soc. 2003; 44:2571–6.
11. Leske MC, Heijl A, Hyman L, et al. EMGT Group. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007; 114:1965–72.
12. Miglior S, Zeyen T, Pfeiffer N, et al. European Glaucoma Prevention Study (EGPS) Group. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005; 112:366–75.
13. Kass MA, Heuer DK, Higginbotham EJ, et al. Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypo- tensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002; 120:701–13.
14. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pres- sure and visual field deterioration. Am J Ophthalmol. 2000; 130:429–40.
15. Medeiros FA, Alencar LM, Zangwill LM, et al. The relationship between intraocular pressure and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology. 2009; 116:1125–33e3.
Article
16. Gordon MO, Beiser JA, Brandt JD, et al. Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002; 120:714–20.
17. Brandt JD, Gordon MO, Gao F, et al. Ocular Hypertension Treatment Study Group. Adjusting intraocular pressure for central corneal thickness does not improve prediction models for primary open- angle glaucoma. Ophthalmology. 2012; 119:437–42.
18. Medeiros FA, Weinreb RN, et al. Is corneal thickness an independent risk factor for glaucoma? Ophthalmology. 2012; 119:435–6.
Article
19. Jonas JB, Holbach L. Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci. 2005; 46:1275–9.
Article
20. Congdon NG, Broman AT, Bandeen-Roche K, et al. Central cor- neal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006; 141:868–75.
21. Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefes Arch Clin Exp Ophthalmol. 2008; 246:735–8.
Article
22. Sullivan-Mee M, Billingsley SC, Patel AD, et al. Ocular Response Analyzer in subjects with and without glaucoma. Optom Vis Sci. 2008; 85:463–70.
Article
23. Wells AP, Garway-Heath DF, Poostchi A, et al. Corneal hysteresis but not corneal thickness correlates with optic nerve surface com- pliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008; 49:3262–8.
24. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response an- alyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol. 2008; 36:508–13.
25. Ang GS, Bochmann F, Townend J, Azuara-Blanco A. Corneal bio- mechanical properties in primary open angle glaucoma and normal tension glaucoma. J Glaucoma. 2008; 17:259–62.
26. De Moraes CG, Hill V, Liebmann JM, Ritch R. Lower corneal hys- teresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012; 21:209–13.
27. Medeiros FA, Meira-Freitas D, Lisboa R, et al. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longi- tudinal study. Ophthalmology. 2013; 120:1533–40.
28. Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glauco- ma. 1st ed.St. Louis: Mosby;1993. p. 52–61.
29. Sakata R, Aihara M, Murata H, et al. Contributing factors for pro- gression of visual field loss in normal-tension glaucoma with med- ical treatment. J Glaucoma. 2013; 22:250–4.
30. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31:156–62.
Article
31. Shah S, Laiquzzaman M, Mantry S, Cunliffe I. Ocular response an- alyser to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol. 2008; 36:508–13.
32. Edmund C. Corneal elasticity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol. 1988; 66:134–40.
Article
33. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003; 22:307–38.
Article
34. Sigal IA, Yang H, Roberts MD, et al. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor in- teractions using parameterized eye-specific models. Invest Ophthalmol Vis Sci. 2011; 52:1896–907.
35. Girard MJ, Suh JK, Bottlang M, et al. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci. 2011; 52:5656–69.
Article
36. Hager A, Loge K, Schroeder B, et al. Effect of central corneal thickness and corneal hysteresis on tonometry as measured by dy- namic contour tonometry, ocular response analyzer, and Goldmann tonometry in glaucomatous eyes. J Glaucoma. 2008; 17:361–5.
37. Ernest PJ, Schouten JS, Beckers HJ, et al. An evidence-based re- view of prognostic factors for glaucomatous visual field progression. Opthalmology. 2013; 120:512–9.
38. Ishida K, Yamamoto T, Sugiyama K, Kitazawa Y. Disk hemorrhage is a significantly negative prognostic factor in normal-tension glaucoma. Am J Ophthalmol. 2000; 129:707–14.
Article
39. Ishida K, Yamamoto T, Kitazawa Y. Clinical factors associated with progression of normal-tension glaucoma. J Glaucoma. 1998; 7:372–7.
Article
40. Sawada A, Kitazawa Y, Yamamoto T, et al. Prevention of visual field defect progression with brovincamine in eyes with nor- mal-tension glaucoma. Ophthalmology. 1996; 103:283–8.