1. Luntz MH, Schenker HI. Retinal vascular accidents in glaucoma and ocular hypertension. Surv Ophthalmol. 1980; 25:163–7.
Article
2. Krakau CE. Disk hemorrhages and retinal vein occlusions in glaucoma. Surv Ophthalmol. 1994; 38(Suppl):S18–21.
Article
3. Sonnsjö B, Krakau CE. Arguments for a vascular glaucoma etiology. Acta Ophthalmol (Copenh). 1993; 71:433–44.
Article
4. Yoo YC, Park KH. Disc hemorrhages in patients with both normal tension glaucoma and branch retinal vein occlusion in different eyes. Korean J Ophthalmol. 2007; 21:222–7.
Article
5. Rath EZ, Frank RN, Shin DH, Kim C. Risk factors for retinal vein occlusions. A case-control study. Ophthalmology. 1992; 99:509–14.
6. Risk factors for branch retinal vein occlusion. The Eye Disease Case-control Study Group. Am J Ophthalmol. 1993; 116:286–96.
7. Risk factors for central retinal vein occlusion. The Eye Disease Case-Control Study Group. Arch Ophthalmol. 1996; 114:545–54.
8. Stewart RM, Clearkin LG. Insulin resistance and autoregulatory dysfunction in glaucoma and retinal vein occlusion. Am J Ophthalmol. 2008; 145:394–6.
Article
9. Bonovas S, Peponis V, Filioussi K. Diabetes mellitus as a risk fac-tor for primary open-angle glaucoma: a meta-analysis. Diabet Med. 2004; 21:609–14.
10. Ellis JD, Evans JM, Ruta DA. . Glaucoma incidence in an un-selected cohort of diabetic patients: is diabetes mellitus a risk fac-tor for glaucoma? DARTS/MEMO collaboration. Diabetes Audit and Research in Tayside Study. Medicines Monitoring Unit. Br J Ophthalmol. 2000; 84:1218–24.
11. Pasquale LR, Kang JH, Manson JE. . Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006; 113:1081–6.
Article
12. Gordon MO, Beiser JA, Brandt JD. . The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002; 120:714–20.
13. Hulsman CA, Vingerling JR, Hofman A. . Blood pressure, ar-terial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol. 2007; 125:805–12.
14. Kim MJ, Woo SJ, Park KH, Kim TW. Retinal nerve fiber layer thickness is decreased in the fellow eyes of patients with unilateral retinal vein occlusion. Ophthalmology. 2011; 118:706–10.
Article
15. Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981; 99:137–43.
Article
16. Jonas JB, Gusek GC, Naumann GO. Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intra-papillary characteristics. Graefes Arch Clin Exp Ophthalmol. 1988; 226:522–30.
17. Janáky M, Grósz A, Tóth E. . Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG. Doc Ophthalmol. 2007; 114:45–51.
Article
18. Tinjust D, Kergoat H, Lovasik JV. Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med. 2002; 73:1189–94.
19. Chhablani J, Rao HB, Begum VU. . Retinal ganglion cells thin-ning in eyes with nonproliferative idiopathic macular telangiectasia type 2A. Invest Ophthalmol Vis Sci. 2015; 56:1416–22.
Article
20. Jeoung JW, Choi YJ, Park KH, Kim DM. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013; 54:4422–9.
Article
21. Nouri-Mahdavi K, Nowroozizadeh S, Nassiri N. . Macular ganglion cell/inner plexiform layer measurements by spectral do-main optical coherence tomography for detection of early glauco-ma and comparison to retinal nerve fiber layer measurements. Am J Ophthalmol. 2013; 156:1297–307.e2.
Article
22. Seong M, Sung KR, Choi EH. . Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coher-ence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010; 51:1446–52.
Article