Ann Lab Med.  2015 Mar;35(2):212-219. 10.3343/alm.2015.35.2.212.

Combined Use of the Modified Hodge Test and Carbapenemase Inhibition Test for Detection of Carbapenemase-Producing Enterobacteriaceae and Metallo-beta-Lactamase-Producing Pseudomonas spp.

Affiliations
  • 1Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea. swonkeun@hallym.or.kr
  • 2Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
  • 3Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
  • 4Department of Dental Hygiene, Silla University, Busan, Korea.

Abstract

BACKGROUND
We evaluated the combined use of the modified Hodge test (MHT) and carbapenemase inhibition test (CIT) using phenylboronic acid (PBA) and EDTA to detect carbapenemase-producing Enterobacteriaceae (CPE) and metallo-beta-lactamase (MBL)-producing Pseudomonas spp.
METHODS
A total of 49 isolates of CPE (15 Klebsiella pneumoniae carbapenemase [KPC], 5 Guiana extended-spectrum beta-lactamase [GES]-5, 9 New Delhi metallo-beta-lactamase [NDM]-1, 5 Verona integron-encoded metallo-beta-lactamase [VIM]-2, 3 imipenem-hydrolyzing beta-lactamase [IMP], and 12 oxacillinase [OXA]-48-like), 25 isolates of MBL-producing Pseudomonas spp. (14 VIM-2 and 11 IMP), and 35 carbapenemase-negative controls were included. The MHT was performed for all isolates as recommended by the Clinical and Laboratory Standards Institute. Enhanced growth of the indicator strain was measured in mm with a ruler. The CIT was performed by directly dripping PBA and EDTA solutions onto carbapenem disks that were placed on Mueller-Hinton agar plates seeded with the test strain.
RESULTS
Considering the results of the MHT with the ertapenem disk in Enterobacteriaceae and Pseudomonas spp., the CIT with the meropenem disk in Enterobacteriaceae, and the imipenem disk in Pseudomonas spp., three combined disk tests, namely MHT-positive plus PBA-positive, EDTA-positive, and MHT-positive plus PBA-negative plus EDTA-negative, had excellent sensitivity and specificity for the detection of KPC- (100% sensitivity and 100% specificity), MBL- (94% sensitivity and 100% specificity), and OXA-48-like-producing isolates (100% sensitivity and 100% specificity), respectively.
CONCLUSIONS
Combined use of the MHT and CIT with PBA and EDTA, for the detection of CPE and MBL-producing Pseudomonas spp., is effective in detecting and characterizing carbapenemases in routine laboratories.

Keyword

Modified Hodge test; Carbapenemase inhibition test; Phenylboronic acid; EDTA; Enterobacteriaceae; Pseudomonas spp.

MeSH Terms

Bacterial Proteins/antagonists & inhibitors/*metabolism
Boronic Acids/chemistry/pharmacology
Disk Diffusion Antimicrobial Tests/*methods
Edetic Acid/chemistry/pharmacology
Enterobacteriaceae/drug effects/*enzymology
Enterobacteriaceae Infections/diagnosis
Humans
Pseudomonas/drug effects/*enzymology
Pseudomonas Infections/diagnosis
Sensitivity and Specificity
beta-Lactamases/chemistry/*metabolism
Bacterial Proteins
Boronic Acids
Edetic Acid
beta-Lactamases

Figure

  • Fig. 1 Representative CIT results for the KPC-2-producing K. pneumoniae isolate (A) and IMP-6-producing P. aeruginosa isolate (B) are shown. Three horizontal lines of disks containing 3 ETP, 3 IPM, and 3 MEM were placed on a MHA plate seeded with the test strain. Then, 10 µL of EDTA (30 mg/mL) and PBA (30 mg/mL) were added along first and third vertical lines, respectively. (A) The difference in zone size in the presence and absence of PBA was ≥5 mm for ETP, IPM, and MEM, suggesting KPC production. (B) The difference in zone size in the presence and absence of EDTA was ≥5 mm for IPM, suggesting MBL production.Abbreviations: CIT, carbapenemase inhibition test; ETP, ertapenem; IPM, imipenem; MEM, meropenem; PBA, phenylboronic acid; KPC, K. pneumoniae carbapenemase; MBL, metallo-β-lactamase.


Cited by  4 articles

Active Surveillance for Carbapenem-resistant Enterobacteriaceae at a Single Center for Four Years
Inho Choi, Yangsoon Lee
Ann Lab Med. 2022;42(3):367-369.    doi: 10.3343/alm.2022.42.3.367.

Evaluation of Diagnostic Performance of RAPIDEC CARBA NP Test for Carbapenemase-Producing Enterobacteriaceae
Wonkeun Song, Gilsung Yoo, Gyu Yul Hwang, Young Uh
Ann Clin Microbiol. 2016;19(3):59-64.    doi: 10.5145/ACM.2021.19.3.59.

Carbapenem Inactivation Method: Accurate Detection and Easy Interpretation of Carbapenemase Production in Enterobacteriaceae and Pseudomonas spp.
Wonkeun Song, Jae-Seok Kim, Hyun Soo Kim, Dong Hoon Shin, Saeam Shin, Min-Jeong Park
Ann Clin Microbiol. 2016;19(4):83-87.    doi: 10.5145/ACM.2016.19.4.83.

Emergence and Spread of OXA-48-Like Carbapenemase-Producing Enterobacteriaceae
Song Wonkeun, Hoon Jeong Seok, Lee Jacob, Soon Lee Seung, Lee Kyungwon
Korean J Nosocomial Infect Control. 2013;20(1):7-18.    doi: 10.14192/kjnic.2015.20.1.7.


Reference

1. Patel JB, Rasheed JK, Kitchel B. Carbapenemase in Enterobacteriaceae: activity, epidemiology, and laboratory detection. Clin Microbiol Newslett. 2009; 31:55–62.
2. Seah C, Low DE, Patel SN, Melano RG. Comparative evaluation of a chromogenic agar medium, the modified Hodge test, and a battery of meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J Clin Microbiol. 2011; 49:1965–1969. PMID: 21430097.
Article
3. Jeong SH, Song W, Bae IK, Kim HS, Kim JS, Park MJ, et al. Broth microdilution methods using β-lactamase inhibitors for the identification of Klebsiella pneumoniae carbapenemases and metallo-β-lactamases in Gram-negative bacilli. Ann Clin Lab Sci. 2014; 44:49–55. PMID: 24695474.
4. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012; 18:1503–1507. PMID: 22932472.
5. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, et al. Evaluation of methods to identify Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol. 2007; 45:2723–2725. PMID: 17581941.
6. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol. 2009; 47:1631–1639. PMID: 19386850.
7. Pasteran F, Mendez T, Rapoport M, Guerriero L, Corso A. Controlling false-positive results obtained with the Hodge and Masuda assays for detection of class a carbapenemase in species of enterobacteriaceae by incorporating boronic acid. J Clin Microbiol. 2010; 48:1323–1332. PMID: 20181912.
8. Carvalhaes CG, Picão RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2010; 65:249–251. PMID: 19996141.
9. Pournaras S, Poulou A, Tsakris A. Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. J Antimicrob Chemother. 2010; 65:1319–1321. PMID: 20395214.
Article
10. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms distrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009; 63:659–667. PMID: 19233898.
11. Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010; 65:1119–1125. PMID: 20378670.
Article
12. Tsakris A, Themeli-Digalaki K, Poulou A, Vrioni G, Voulgari E, Koumaki V, et al. Comparative evaluation of combined-disk tests using different boronic acid compounds for detection of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae clinical isolates. J Clin Microbiol. 2011; 49:2804–2809. PMID: 21632901.
13. Birgy A, Bidet P, Genel N, Doit C, Decré D, Arlet G, et al. Phenotyping screening of carbapenemases and associated β-lactamases in carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2012; 50:1295–1302. PMID: 22259214.
14. Giske CG, Gezelius L, Samuelsen Ø, Warner M, Sundsfjord A, Woodford N. A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect. 2011; 17:552–556. PMID: 20597925.
15. Lee K, Yong D, Yum JH, Lim YS, Bolmström A, Qwärnström A, et al. Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas app. and Acinetobacter spp. J Clin Microbiol. 2005; 43:942–944. PMID: 15695713.
16. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001; 45:1151–1161. PMID: 11257029.
17. Poirel L, Castanheira M, Carrër A, Rodriguez CP, Jones RN, Smayevsky J, et al. OXA-163, an OXA-48-related class D β-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob Agents Chemother. 2011; 55:2546–2551. PMID: 21422200.
Article
18. Solé M, Pitart C, Roca I, Fàbrega A, Salvador P, Muñoz L, et al. First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain. Antimicrob Agents Chemother. 2011; 55:4402–4404. PMID: 21730115.
19. Song W, Suh B, Choi JY, Jeong SH, Jeon EH, Lee YK, et al. In vivo selection of carbapenem-resistant Klebsiella pneumoniae by OmpK36 loss during meropenem treatment. Diagn Microbiol Infect Dis. 2009; 65:447–449. PMID: 19766430.
20. Clinical and Laboratory Standards Institutes. Performance standards for antimicrobial susceptibility testing. 23rd Informational supplement, M100-S23. Wayne, PA: CLSI;2013.
21. Pasteran F, Veliz O, Rapoport M, Guerriero L, Corso A. Sensitive and specific modified Hodge test for KPC and metallo-β-lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603. J Clin Microbiol. 2011; 49:4301–4303. PMID: 22012019.
22. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient test for screening metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol. 2000; 38:40–43. PMID: 10618060.
Article
23. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003; 41:4623–4629. PMID: 14532193.
24. Yong D, Lee Y, Jeong SH, Lee K, Chong Y. Evaluation of double-disk potentiation and disk potentiation tests using dipicolinic acid for detection of metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2012; 50:3227–3232. PMID: 22837321.
Full Text Links
  • ALM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr