Anesth Pain Med.  2016 Apr;11(2):117-129. 10.17085/apm.2016.11.2.117.

Effects of portal hyperperfusion on partial liver grafts in the presence of hyperdynamic splanchnic circulation: hepatic regeneration versus portal hyperperfusion injury

Affiliations
  • 1Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea. usmed@cu.ac.kr

Abstract

In cirrhotic patients undergoing liver transplantation, reperfusion of a liver graft typically increases portal venous blood flow (PVF) because of a decrease in resistance in the liver graft to the PVF and underlying hyperdynamic splanchnic circulation, which develops due to liver cirrhosis complicated by portal hypertension and persists even after successful liver transplantation. If the liver graft has enough capacity to accommodate the increased PVF, the shear stress inflicted on the sinusoidal endothelial cells of the graft promotes hepatic regeneration; otherwise, small-for-size syndrome (SFSS) develops, leading to poor graft function and graft failure. In particular, a partial graft transplanted to patients undergoing living donor liver transplantation has less capacity to accommodate the enhanced PVF than a whole liver graft. Thus, the clinical conditions that the partial graft encounters determine either hepatic regeneration or development of SFSS. Consistent with this, this review will discuss the two conflicting effects of portal hyperperfusion (hepatic regeneration vs. portal hyperperfusion injury) on the partial grafts in cirrhotic patients suffering from hyperdynamic splanchnic circulation, in addition to normal physiology and pathophysiology of hepatic hemodynamics.

Keyword

Liver cirrhosis; Liver regeneration; Liver transplantation; Portal hypertension; Splanchnic circulation

MeSH Terms

Endothelial Cells
Hemodynamics
Humans
Hypertension, Portal
Liver Cirrhosis
Liver Regeneration
Liver Transplantation
Liver*
Living Donors
Physiology
Regeneration*
Reperfusion
Splanchnic Circulation*
Transplants*

Reference

1. Eguchi S, Yanaga K, Sugiyama N, Okudaira S, Furui J, Kanematsu T. Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation. Liver Transpl. 2003; 9:547–51. DOI: 10.1053/jlts.2003.50128. PMID: 12783393.
Article
2. Hadengue A, Lebrec D, Moreau R, Sogni P, Durand F, Gaudin C, et al. Persistence of systemic and splanchnic hyperkinetic circulation in liver transplant patients. Hepatology. 1993; 17:175–8. DOI: 10.1002/hep.1840170202. PMID: 8428714.
Article
3. Schoen JM, Wang HH, Minuk GY, Lautt WW. Shear stress-induced nitric oxide release triggers the liver regeneration cascade. Nitric Oxide. 2001; 5:453–64. DOI: 10.1006/niox.2001.0373. PMID: 11587560.
Article
4. Abshagen K, Eipel C, Kalff JC, Menger MD, Vollmar B. Kupffer cells are mandatory for adequate liver regeneration by mediating hyperperfusion via modulation of vasoactive proteins. Microcirculation. 2008; 15:37–47. DOI: 10.1080/10739680701412989. PMID: 17952799.
Article
5. Troisi R, Ricciardi S, Smeets P, Petrovic M, Van Maele G, Colle I, et al. Effects of hemi-portocaval shunts for inflow modulation on the outcome of small-for-size grafts in living donor liver transplantation. Am J Transplant. 2005; 5:1397–404. DOI: 10.1111/j.1600-6143.2005.00850.x. PMID: 15888047.
Article
6. Greenway CV, Stark RD. Hepatic vascular bed. Physiol Rev. 1971; 51:23–65. PMID: 5543903.
Article
7. Bradley SE. Variations in hepatic blood flow in man during health and disease. N Engl J Med. 1949; 240:456–61. DOI: 10.1056/NEJM194903242401203. PMID: 18112686.
Article
8. Atkinson M, Sherlock S. Intrasplenic pressure as index of portal venous pressure. Lancet. 1954; 266:1325–7. DOI: 10.1016/S0140-6736(54)92212-6.
Article
9. Wakim KG. Physiology of the liver. Am J Med. 1954; 16:256–71. DOI: 10.1016/0002-9343(54)90342-3.
Article
10. Wakim KG. Basic and clinical physiology of the liver: normal and abnormal. Anesth Analg. 1965; 44(Suppl):632–710. PMID: 5319210.
11. Lautt WW. Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res. 2007; 37:891–903. DOI: 10.1111/j.1872-034X.2007.00148.x. PMID: 17854463. PMCID: PMC2981600.
Article
12. Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009; 89:1269–339. DOI: 10.1152/physrev.00027.2008. PMID: 19789382.
Article
13. Pirola RC, Lieber CS. Hypothesis: energy wastage in alcoholism and drug abuse: possible role of hepatic microsomal enzymes. Am J Clin Nutr. 1976; 29:90–3. PMID: 1108639.
Article
14. Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology. 1987; 7:952–63. DOI: 10.1002/hep.1840070527.
Article
15. Rappaport AM. The microcirculatory hepatic unit. Microvasc Res. 1973; 6:212–28. DOI: 10.1016/0026-2862(73)90021-6.
Article
16. Davis WD Jr, Batson HM Jr, Reichman S, Gorlin R, Storaasli JP. Clinical applications of intrasplenic technique of portal pressure and hepatic blood flow determinations. Gastroenterology. 1958; 34:52–64. PMID: 13501355.
Article
17. Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology. 2008; 134:1715–28. DOI: 10.1053/j.gastro.2008.03.007. PMID: 18471549.
Article
18. Buob S, Johnston AN, Webster CR. Portal hypertension: pathophysiology, diagnosis, and treatment. J Vet Intern Med. 2011; 25:169–86. DOI: 10.1111/j.1939-1676.2011.00691.x. PMID: 21382073.
Article
19. Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J Gastroenterol. 2010; 16:6046–57. DOI: 10.3748/wjg.v16.i48.6046. PMID: 21182219. PMCID: PMC3012579.
Article
20. Jakab F, Ráth Z, Schmal F, Nagy P, Faller J. The interaction between hepatic arterial and portal venous blood flows;simultaneous measurement by transit time ultrasonic volume flowmetry. Hepatogastroenterology. 1995; 42:18–21. PMID: 7782028.
21. Lautt WW, Legare DJ, d’Almeida MS. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985; 248:H331–8. PMID: 2579585.
Article
22. Lautt WW. The hepatic artery: subservient to hepatic metabolism or guardian of normal hepatic clearance rates of humoral substances. Gen Pharmacol. 1977; 8:73–8. DOI: 10.1016/0306-3623(77)90030-1xs.
Article
23. Ebbing C, Rasmussen S, Godfrey KM, Hanson MA, Kiserud T. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod Sci. 2008; 15:166–78. DOI: 10.1177/1933719107310307. PMID: 18276952.
Article
24. Ezzat WR, Lautt WW. Hepatic arterial pressure-flow autoregulation is adenosine mediated. Am J Physiol. 1987; 252:H836–45. PMID: 3565595.
Article
25. Lautt WW, Legare DJ. The use of 8-phenyltheophylline as a competitive antagonist of adenosine and an inhibitor of the intrinsic regulatory mechanism of the hepatic artery. Can J Physiol Pharmacol. 1985; 63:717–22. DOI: 10.1139/y85-117.
Article
26. Richter S, Vollmar B, Mücke I, Post S, Menger MD. Hepatic arteriolo-portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. J Physiol. 2001; 531:193–201. DOI: 10.1111/j.1469-7793.2001.0193j.x. PMID: 11179403. PMCID: PMC2278440.
Article
27. Browse DJ, Mathie RT, Benjamin IS, Alexander B. The role of ATP and adenosine in the control of hepatic blood flow in the rabbit liver in vivo. Comp Hepatol. 2003; 2:9. PMID: 14641917. PMCID: PMC305370.
28. Browse DJ, Mathie RT, Benjamin IS, Alexander B. The action of ATP on the hepatic arterial and portal venous vascular networks of the rabbit liver: the role of adenosine. Eur J Pharmacol. 1997; 320:139–44. DOI: 10.1016/S0014-2999(96)00887-4.
Article
29. Belloni FL, Elkin PL, Giannotto B. The mechanism of adenosine release from hypoxic rat liver cells. Br J Pharmacol. 1985; 85:441–6. DOI: 10.1111/j.1476-5381.1985.tb08880.x. PMID: 4027478. PMCID: PMC1916592.
Article
30. Ralevic V, Milner P, Kirkpatrick KA, Burnstock G. Flow-induced release of adenosine 5’-triphosphate from endothelial cells of the rat mesenteric arterial bed. Experientia. 1992; 48:31–4. DOI: 10.1007/BF01923600. PMID: 1371101.
Article
31. Pearson JD, Carleton JS, Gordon JL. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980; 190:421–9. DOI: 10.1042/bj1900421. PMID: 6258567. PMCID: PMC1162107.
Article
32. Bloom S, Kemp W, Lubel J. Portal hypertension: pathophysiology, diagnosis and management. Intern Med J. 2015; 45:16–26. DOI: 10.1111/imj.12590. PMID: 25230084.
Article
33. Kumar A, Sharma P, Sarin SK. Hepatic venous pressure gradient measurement: time to learn! Indian J Gastroenterol. 2008; 27:74–80. PMID: 18695309.
34. Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol. 2006; 44:111–7. DOI: 10.1016/j.jhep.2005.07.036. PMID: 16274836.
Article
35. Groszmann RJ, Garcia-Tsao G, Bosch J, Grace ND, Burroughs AK, Planas R, et al. Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis. N Engl J Med. 2005; 353:2254–61. DOI: 10.1056/NEJMoa044456. PMID: 16306522.
Article
36. Procopeţ B, Tantau M, Bureau C. Are there any alternative methods to hepatic venous pressure gradient in portal hypertension assessment? J Gastrointestin Liver Dis. 2013; 22:73–8. PMID: 23539394.
37. Bosch J, Abraldes JG, Fernández M, García-Pagán JC. Hepatic endothelial dysfunction and abnormal angiogenesis: new targets in the treatment of portal hypertension. J Hepatol. 2010; 53:558–67. DOI: 10.1016/j.jhep.2010.03.021. PMID: 20561700.
Article
38. Moreno AH, Burchell AR, Rousselot LM, Panke WF, Slafsky F, Burke JH. Portal blood flow in cirrhosis of the liver. J Clin Invest. 1967; 46:436–45. DOI: 10.1172/JCI105545. PMID: 6023778. PMCID: PMC297064.
Article
39. Vollmar B, Siegmund S, Richter S, Menger MD. Microvascular consequences of Kupffer cell modulation in rat liver fibrogenesis. J Pathol. 1999; 189:85–91. DOI: 10.1002/(SICI)1096-9896(199909)189:1<85::AID-PATH399>3.0.CO;2-1.
Article
40. Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology. 1984; 87:1120–6. PMID: 6479534.
Article
41. Colle I, Geerts AM, Van Steenkiste C, Van Vlierberghe H. Hemodynamic changes in splanchnic blood vessels in portal hypertension. Anat Rec (Hoboken). 2008; 291:699–713. DOI: 10.1002/ar.20667. PMID: 18484617.
Article
42. Ignarro LJ, Byrns RE, Wood KS. Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein. Circ Res. 1987; 60:82–92. DOI: 10.1161/01.RES.60.1.82. PMID: 3032474.
Article
43. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288:373–6. DOI: 10.1038/288373a0.
Article
44. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992; 256:225–8. DOI: 10.1126/science.1373522. PMID: 1373522.
Article
45. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990; 347:768–70. DOI: 10.1038/347768a0. PMID: 1700301.
Article
46. Tazi KA, Moreau R, Hervé P, Dauvergne A, Cazals-Hatem D, Bert F, et al. Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology. 2005; 129:303–14. DOI: 10.1053/j.gastro.2005.04.016. PMID: 16012955.
Article
47. Tsai MH, Iwakiri Y, Cadelina G, Sessa WC, Groszmann RJ. Mesenteric vasoconstriction triggers nitric oxide overproduction in the superior mesenteric artery of portal hypertensive rats. Gastroenterology. 2003; 125:1452–61. DOI: 10.1016/j.gastro.2003.07.014. PMID: 14598261.
Article
48. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009; 50:604–20. DOI: 10.1016/j.jhep.2008.12.011. PMID: 19157625.
Article
49. Jurzik L, Froh M, Straub RH, Schölmerich J, Wiest R. Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol. 2005; 43:258–65. DOI: 10.1016/j.jhep.2005.02.036. PMID: 15963596.
Article
50. Xu L, Carter EP, Ohara M, Martin PY, Rogachev B, Morris K, et al. Neuronal nitric oxide synthase and systemic vasodilation in rats with cirrhosis. Am J Physiol Renal Physiol. 2000; 279:F1110–5. PMID: 11097630.
Article
51. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology. 2006; 43(2 Suppl 1):S121–31. DOI: 10.1002/hep.20993. PMID: 16447289.
Article
52. Genecin P, Polio J, Groszmann RJ. Na restriction blunts expansion of plasma volume and ameliorates hyperdynamic circulation in portal hypertension. Am J Physiol. 1990; 259:G498–503. PMID: 2399990.
Article
53. Vaughan RB, Angus PW, Chin-Dusting JP. Evidence for altered vascular responses to exogenous endothelin-1 in patients with advanced cirrhosis with restoration of the normal vasoconstrictor response following successful liver transplantation. Gut. 2003; 52:1505–10. DOI: 10.1136/gut.52.10.1505. PMID: 12970146. PMCID: PMC1773833.
Article
54. Sato Y, Koyama S, Tsukada K, Hatakeyama K. Acute portal hypertension reflecting shear stress as a trigger of liver regeneration following partial hepatectomy. Surg Today. 1997; 27:518–26. DOI: 10.1007/BF02385805. PMID: 9306545.
Article
55. Busse R, Fleming I. Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. J Vasc Res. 1998; 35:73–84. DOI: 10.1159/000025568. PMID: 9588870.
Article
56. Sato Y, Tsukada K, Hatakeyama K. Role of shear stress and immune responses in liver regeneration after a partial hepatectomy. Surg Today. 1999; 29:1–9. DOI: 10.1007/BF02482962. PMID: 9934824.
Article
57. Koch KS, Leffert HL. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979; 18:153–63. DOI: 10.1016/0092-8674(79)90364-7.
Article
58. Yee AG, Revel JP. Loss and reappearance of gap junctions in regenerating liver. J Cell Biol. 1978; 78:554–64. DOI: 10.1083/jcb.78.2.554.
Article
59. Morsiani E, Aleotti A, Ricci D. Haemodynamic and ultrastructural observations on the rat liver after two-thirds partial hepatectomy. J Anat. 1998; 192:507–15. DOI: 10.1046/j.1469-7580.1998.19240507.x. PMID: 9723978. PMCID: PMC1467805.
Article
60. Thevananther S, Sun H, Li D, Arjunan V, Awad SS, Wyllie S, et al. Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology. 2004; 39:393–402. DOI: 10.1002/hep.20075. PMID: 14767992.
Article
61. Schlosser SF, Burgstahler AD, Nathanson MH. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996; 93:9948–53. DOI: 10.1073/pnas.93.18.9948. PMID: 8790437. PMCID: PMC38535.
Article
62. Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L, et al. ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol. 2010; 52:54–62. DOI: 10.1016/j.jhep.2009.10.005. PMID: 19914731. PMCID: PMC3625734.
Article
63. Crumm S, Cofan M, Juskeviciute E, Hoek JB. Adenine nucleotide changes in the remnant liver: An early signal for regeneration after partial hepatectomy. Hepatology. 2008; 48:898–908. DOI: 10.1002/hep.22421. PMID: 18697206. PMCID: PMC3348855.
Article
64. Schaffner F, Poper H. Capillarization of hepatic sinusoids in man. Gastroenterology. 1963; 44:239–42. PMID: 13976646.
Article
65. Shah V, Haddad FG, Garcia-Cardena G, Frangos JA, Mennone A, Groszmann RJ, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997; 100:2923–30. DOI: 10.1172/JCI119842. PMID: 9389760. PMCID: PMC508500.
Article
66. Wang HH, Lautt WW. Does nitric oxide (NO) trigger liver regeneration? Proc West Pharmacol Soc. 1997; 40:17–8. PMID: 9436201.
67. Wang HH, Lautt WW. Evidence of nitric oxide, a flow-dependent factor, being a trigger of liver regeneration in rats. Can J Physiol Pharmacol. 1998; 76:1072–9. DOI: 10.1139/y98-128.
Article
68. Hortelano S, Zeini M, Casado M, Martín-Sanz P, Boscá L. Animal models for the study of liver regeneration: role of nitric oxide and prostaglandins. Front Biosci. 2007; 12:13–21. DOI: 10.2741/2045. PMID: 17127280.
Article
69. García-Trevijano ER, Martínez-Chantar ML, Latasa MU, Mato JM, Avila MA. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterology. 2002; 122:1355–63. DOI: 10.1053/gast.2002.33020. PMID: 11984522.
Article
70. Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, et al. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. Transplantation. 1999; 67:321–7. DOI: 10.1097/00007890-199901270-00024. PMID: 10075602.
71. Gondolesi GE, Florman S, Matsumoto C, Huang R, Fishbein TM, Sheiner PA, et al. Venous hemodynamics in living donor right lobe liver transplantation. Liver Transpl. 2002; 8:809–13. DOI: 10.1053/jlts.2002.33690. PMID: 12200783.
Article
72. García-Valdecasas JC, Fuster J, Charco R, Bombuy E, Fondevila C, Ferrer J, et al. Changes in portal vein flow after adult living-donor liver transplantation: does it influence postoperative liver function? Liver Transpl. 2003; 9:564–9. DOI: 10.1053/jlts.2003.50069. PMID: 12783396.
Article
73. Park MY, Lee YJ, Rha SE, Oh SN, Byun JY, Kim DG. Correlation of portal venous velocity and portal venous flow with short-term graft regeneration in recipients of living donor liver transplants. Transplant Proc. 2008; 40:1488–91. DOI: 10.1016/j.transproceed.2008.01.074. PMID: 18589135.
Article
74. Jiang SM, Zhou GW, Zhang R, Peng CH, Yan JQ, Wan L, et al. Role of splanchnic hemodynamics in liver regeneration after living donor liver transplantation. Liver Transpl. 2009; 15:1043–9. DOI: 10.1002/lt.21797. PMID: 19718645.
Article
75. Lo CM, Liu CL, Fan ST. Portal hyperperfusion injury as the cause of primary nonfunction in a small-for-size liver graft-successful treatment with splenic artery ligation. Liver Transpl. 2003; 9:626–8. DOI: 10.1053/jlts.2003.50081. PMID: 12783407.
Article
76. Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant. 2005; 5:2605–10. DOI: 10.1111/j.1600-6143.2005.01081.x. PMID: 16212618.
Article
77. Takeda K, Tanaka K, Kumamoto T, Nojiri K, Mori R, Taniguchi K, et al. Emergency versus elective living-donor liver transplantation: a comparison of a single center analysis. Surg Today. 2012; 42:453–9. DOI: 10.1007/s00595-011-0040-5. PMID: 22116395.
Article
78. Gruttadauria S, Pagano D, Luca A, Gridelli B. Small-for-size syndrome in adult-to-adult living-related liver transplantation. World J Gastroenterol. 2010; 16:5011–5. DOI: 10.3748/wjg.v16.i40.5011. PMID: 20976835. PMCID: PMC2965275.
Article
79. Kelly DM, Zhu X, Shiba H, Irefin S, Trenti L, Cocieru A, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl. 2009; 15:1448–57. DOI: 10.1002/lt.21863. PMID: 19877203.
Article
80. Fan ST, Lo CM, Liu CL, Yong BH, Wong J. Determinants of hospital mortality of adult recipients of right lobe live donor liver transplantation. Ann Surg. 2003; 238:864–69. DOI: 10.1097/00000658-200307000-00018. PMID: 14631223. PMCID: PMC1356168.
Article
81. Soejima Y, Taketomi A, Yoshizumi T, Uchiyama H, Harada N, Ijichi H, et al. Feasibility of left lobe living donor liver transplantation between adults: an 8-year, single-center experience of 107 cases. Am J Transplant. 2006; 6:1004–11. DOI: 10.1111/j.1600-6143.2006.01284.x. PMID: 16611337.
Article
82. Hill MJ, Hughes M, Jie T, Cohen M, Lake J, Payne WD, et al. Graft weight/recipient weight ratio: how well does it predict outcome after partial liver transplants? Liver Transpl. 2009; 15:1056–62. DOI: 10.1002/lt.21846. PMID: 19718640.
Article
83. Ikegami T, Shirabe K, Yoshizumi T, Aishima S, Taketomi YA, Soejima Y, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia. Am J Transplant. 2012; 12:1886–97. DOI: 10.1111/j.1600-6143.2012.04052.x. PMID: 22494784.
Article
84. Asencio JM, Vaquero J, Olmedilla L, García Sabrido JL. “Small-for-flow” syndrome: shifting the “size” paradigm. Med Hypotheses. 2013; 80:573–7. DOI: 10.1016/j.mehy.2013.01.028. PMID: 23428310.
Article
85. Luca A, Miraglia R, Caruso S, Milazzo M, Gidelli B, Bosch J. Effects of splenic artery occlusion on portal pressure in patients with cirrhosis and portal hypertension. Liver Transpl. 2006; 12:1237–43. DOI: 10.1002/lt.20762. PMID: 16741929.
Article
86. Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, et al. Small-for-size graft in living donor liver transplantation: how far should we go? Liver Transpl. 2003; 9:S29–35. DOI: 10.1053/jlts.2003.50198. PMID: 12942476.
Article
87. Ito T, Kiuchi T, Yamamoto H, Oike F, Ogura Y, Fujimoto Y, et al. Changes in portal venous pressure in the early phase after living donor liver transplantation: pathogenesis and clinical implications. Transplantation. 2003; 75:1313–7. DOI: 10.1097/01.TP.0000063707.90525.10. PMID: 12717222.
88. Palmes D, Minin E, Budny T, Uhlmann D, Armann B, Stratmann U, et al. The endothelin/nitric oxide balance determines small-for-size liver injury after reduced-size rat liver transplantation. Virchows Arch. 2005; 447:731–41. DOI: 10.1007/s00428-005-0006-3. PMID: 16012845.
Article
89. Kaido T, Mori A, Ogura Y, Hata K, Yoshizawa A, Iida T, et al. Lower limit of the graft-to-recipient weight ratio can be safely reduced to 0.6% in adult-to-adult living donor liver transplantation in combination with portal pressure control. Transplant Proc. 2011; 43:2391–3. DOI: 10.1016/j.transproceed.2011.05.037. PMID: 21839274.
Article
90. Marcos A, Olzinski AT, Ham JM, Fisher RA, Posner MP. The interrelationship between portal and arterial blood flow after adult to adult living donor liver transplantation. Transplantation. 2000; 70:1697–703. DOI: 10.1097/00007890-200012270-00006. PMID: 11152099.
Article
91. Rocheleau B, Ethier C, Houle R, Huet PM, Bilodeau M. Hepatic artery buffer response following left portal vein ligation: its role in liver tissue homeostasis. Am J Physiol. 1999; 277:G1000–7. PMID: 10564106.
92. Troisi R, de Hemptinne B. Clinical relevance of adapting portal vein flow in living donor liver transplantation in adult patients. Liver Transpl. 2003; 9:S36–41. DOI: 10.1053/jlts.2003.50200. PMID: 12942477.
Article
93. Fondevila C, Hessheimer AJ, Taurá P, Sánchez O, Calatayud D, de Riva N, et al. Portal hyperperfusion: mechanism of injury and stimulus for regeneration in porcine small-for-size transplantation. Liver Transpl. 2010; 16:364–74. DOI: 10.1002/lt.21989. PMID: 20209596.
Article
94. Boillot O, Delafosse B, Méchet I, Boucaud C, Pouyet M. Small-for-size partial liver graft in an adult recipient;a new transplant technique. Lancet. 2002; 359:406–7. DOI: 10.1016/S0140-6736(02)07593-1.
95. Yamada T, Tanaka K, Uryuhara K, Ito K, Takada Y, Uemoto S. Selective hemi-portocaval shunt based on portal vein pressure for small-for-size graft in adult living donor liver transplantation. Am J Transplant. 2008; 8:847–53. DOI: 10.1111/j.1600-6143.2007.02144.x. PMID: 18261170.
Article
96. Botha JF, Langnas AN, Campos BD, Grant WJ, Freise CE, Ascher NL, et al. Left lobe adult-to-adult living donor liver transplantation: small grafts and hemiportocaval shunts in the prevention of small-for-size syndrome. Liver Transpl. 2010; 16:649–57. DOI: 10.1002/lt.22043.
Article
97. Kanazawa H, Takada Y, Ogura Y, Oike F, Egawa H, Uemoto S. Mesorenal shunt using inferior mesenteric vein and left renal vein in a case of LDLT. Transpl Int. 2009; 22:1189–92. DOI: 10.1111/j.1432-2277.2009.00928.x. PMID: 19686463.
Article
98. Sato Y, Yamamoto S, Takeishi T, Kato T, Nakatsuka H, Kobayashi T, et al. Inferior mesenteric venous left renal vein shunting for decompression of excessive portal hypertension in adult living related liver transplantation. Transplant Proc. 2004; 36:2234–6. DOI: 10.1016/j.transproceed.2004.08.027. PMID: 15561203.
Article
99. Sato Y, Yamamoto S, Takeishi T, Hirano K, Kobayashi T, Kato T, et al. Management of major portosystemic shunting in small-for-size adult living-related donor liver transplantation with a left-sided graft liver. Surg Today. 2006; 36:354–60. DOI: 10.1007/s00595-005-3136-y. PMID: 16554993.
Article
100. Ogura Y, Hori T, El Moghazy WM, Yoshizawa A, Oike F, Mori A, et al. Portal pressure <15 mm Hg is a key for successful adult living donor liver transplantation utilizing smaller grafts than before. Liver Transpl. 2010; 16:718–28. PMID: 20517905.
101. Umeda Y, Yagi T, Sadamori H, Matsukawa H, Matsuda H, Shinoura S, et al. Effects of prophylactic splenic artery modulation on portal overperfusion and liver regeneration in small-for-size graft. Transplantation. 2008; 86:673–80. DOI: 10.1097/TP.0b013e318181e02d. PMID: 18791439.
Article
102. Humar A, Beissel J, Crotteau S, Cohen M, Lake J, Payne WD. Delayed splenic artery occlusion for treatment of established small-for-size syndrome after partial liver transplantation. Liver Transpl. 2009; 15:163–8. DOI: 10.1002/lt.21636. PMID: 19177447.
Article
103. Botha JF, Campos BD, Johanning J, Mercer D, Grant W, Langnas A. Endovascular closure of a hemiportocaval shunt after small-for-size adult-to-adult left lobe living donor liver transplantation. Liver Transpl. 2009; 15:1671–5. DOI: 10.1002/lt.21944. PMID: 19938118.
Article
104. Raut V, Alikhanov R, Belghiti J, Uemoto S. Review of the surgical approach to prevent small-for-size syndrome in recipients after left lobe adult LDLT. Surg Today. 2014; 44:1189–96. DOI: 10.1007/s00595-013-0658-6. PMID: 23904045.
Article
105. Eipel C, Abshagen K, Ritter J, Cantré D, Menger MD, Vollmar B. Splenectomy improves survival by increasing arterial blood supply in a rat model of reduced-size liver. Transpl Int. 2010; 23:998–1007. DOI: 10.1111/j.1432-2277.2010.01079.x. PMID: 20302595.
Article
106. Payen DM, Fratacci MD, Dupuy P, Gatecel C, Vigouroux C, Ozier Y, et al. Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery. 1990; 107:417–27. PMID: 2181716.
107. Samimi F, Irish WD, Eghtesad B, Demetris AJ, Starzl TE, Fung JJ. Role of splenectomy in human liver transplantation under modern-day immunosuppression. Dig Dis Sci. 1998; 43:1931–7. DOI: 10.1023/A:1018822206580. PMID: 9753254. PMCID: PMC2977917.
108. Pan C, Shi Y, Zhang JJ, Deng YL, Zheng H, Zhu ZJ, et al. Single-center experience of 253 portal vein thrombosis patients undergoing liver transplantation in China. Transplant Proc. 2009; 41:3761–5. DOI: 10.1016/j.transproceed.2009.06.215. PMID: 19917382.
Article
109. Piscaglia F, Zironi G, Gaiani S, Mazziotti A, Cavallari A, Gramantieri L, et al. Systemic and splanchnic hemodynamic changes after liver transplantation for cirrhosis: a long-term prospective study. Hepatology. 1999; 30:58–64. DOI: 10.1002/hep.510300112. PMID: 10385639.
Article
110. Balci D, Taner B, Dayangac M, Akin B, Yaprak O, Duran C, et al. Splenic abscess after splenic artery ligation in living donor liver transplantation: a case report. Transplant Proc. 2008; 40:1786–8. DOI: 10.1016/j.transproceed.2007.10.012. PMID: 18589197.
Article
111. Hori T, Ogura Y, Ogawa K, Kaido T, Segawa H, Okajima H, et al. How transplant surgeons can overcome the inevitable insufficiency of allograft size during adult living-donor liver transplantation: strategy for donor safety with a smaller-size graft and excellent recipient results. Clin Transplant. 2012; 26:E324–34. DOI: 10.1111/j.1399-0012.2012.01664.x. PMID: 22686957.
Article
112. Sainz-Barriga M, Scudeller L, Costa MG, de Hemptinne B, Troisi RI. Lack of a correlation between portal vein flow and pressure: toward a shared interpretation of hemodynamic stress governing inflow modulation in liver transplantation. Liver Transpl. 2011; 17:836–48. DOI: 10.1002/lt.22295. PMID: 21384528.
Article
113. Hessheimer AJ, Fondevila C, Taurá P, Muñoz J, Sánchez O, Fuster J, et al. Decompression of the portal bed and twice-baseline portal inflow are necessary for the functional recovery of a “small-for-size” graft. Ann Surg. 2011; 253:1201–10. DOI: 10.1097/SLA.0b013e3181ffb2d7. PMID: 21587116.
Article
114. Shimamura T, Taniguchi M, Jin MB, Suzuki T, Matsushita M, Furukawa H, et al. Excessive portal venous inflow as a cause of allograft dysfunction in small-for-size living donor liver transplantation. Transplant Proc. 2001; 33:1331. DOI: 10.1016/S0041-1345(00)02496-9.
Article
115. Feng AC, Fan HL, Chen TW, Hsieh CB. Hepatic hemodynamic changes during liver transplantation: a review. World J Gastroenterol. 2014; 20:11131–41. DOI: 10.3748/wjg.v20.i32.11131. PMID: 25170200. PMCID: PMC4145754.
Article
116. Guo L, Haga S, Enosawa S, Naruse K, Harihara Y, Sugawara Y, et al. Improved hepatic regeneration with reduced injury by redox factor-1 in a rat small-sized liver transplant model. Am J Transplant. 2004; 4:879–87. DOI: 10.1111/j.1600-6143.2004.00444.x. PMID: 15147421.
Article
117. Xu X, Man K, Zheng SS, Liang TB, Lee TK, Ng KT, et al. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl. 2006; 12:621–7. DOI: 10.1002/lt.20630. PMID: 16555322.
Article
118. Kuriyama N, Isaji S, Hamada T, Kishiwada M, Ohsawa I, Usui M, et al. The cytoprotective effects of addition of activated protein C into preservation solution on small-for-size grafts in rats. Liver Transpl. 2010; 16:1–11. DOI: 10.1002/lt.21923. PMID: 20035525.
Article
119. Yagi S, Nagai K, Kadaba P, Afify M, Teramukai S, Uemoto S, et al. A novel organ preservation for small partial liver transplantations in rats: venous systemic oxygen persufflation with nitric oxide gas. Am J Transplant. 2013; 13:222–8. DOI: 10.1111/j.1600-6143.2012.04310.x. PMID: 23126657.
120. Yagi S, Doorschodt BM, Afify M, Klinge U, Kobayashi E, Uemoto S, et al. Improved preservation and microcirculation with POLYSOL after partial liver transplantation in rats. J Surg Res. 2011; 167:e375–83. DOI: 10.1016/j.jss.2010.12.040. PMID: 21392801.
Article
121. Ji Y, Dahmen U, Madrahimov N, Madrahimova F, Xing W, Dirsch O. G-CSF administration in a small-for-size liver model. J Invest Surg. 2009; 22:167–77. DOI: 10.1080/08941930802713027. PMID: 19466653.
Article
122. Ijichi H, Taketomi A, Yoshizumi T, Uchiyama H, Yonemura Y, Soejima Y, et al. Hyperbaric oxygen induces vascular endothelial growth factor and reduces liver injury in regenerating rat liver after partial hepatectomy. J Hepatol. 2006; 45:28–34. DOI: 10.1016/j.jhep.2005.12.021. PMID: 16513203.
Article
123. Suehiro T, Shimada M, Kishikawa K, Shimura T, Soejima Y, Yoshizumi T, et al. Effect of intraportal infusion to improve small for size graft injury in living donor adult liver transplantation. Transpl Int. 2005; 18:923–8. DOI: 10.1111/j.1432-2277.2005.00159.x. PMID: 16008741.
Article
124. Vesely TM. Central venous catheter tip position: a continuing controversy. J Vasc Interv Radiol. 2003; 14:527–34. DOI: 10.1097/01.RVI.0000071097.76348.72. PMID: 12761305.
Article
125. Sand L, Rizell M, Houltz E, Karlsen K, Wiklund J, Odenstedt Hergès H, et al. Effect of patient position and PEEP on hepatic, portal and central venous pressures during liver resection. Acta Anaesthesiol Scand. 2011; 55:1106–12. DOI: 10.1111/j.1399-6576.2011.02502.x. PMID: 22092208.
Article
126. Greenway CV, Lautt WW. Distensibility of hepatic venous resistance sites and consequences on portal pressure. Am J Physiol. 1988; 254:H452–8. PMID: 3348424.
Article
127. Laine GA, Hall JT, Laine SH, Granger J. Transsinusoidal fluid dynamics in canine liver during venous hypertension. Circ Res. 1979; 45:317–23. DOI: 10.1161/01.RES.45.3.317. PMID: 572270.
Article
128. Ryu TH, Jung JY, Choi DL, Han YS, Kim JD, Kim JH. Optimal central venous pressure during the neohepatic phase to decrease peak portal vein flow velocity for the prevention of portal hyperperfusion in patients undergoing living donor liver transplantation. Transplant Proc. 2015; 47:1194–8. DOI: 10.1016/j.transproceed.2014.10.071. PMID: 26036552.
Article
Full Text Links
  • APM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr