Exp Neurobiol.  2016 Aug;25(4):147-155. 10.5607/en.2016.25.4.147.

Prothrombin Kringle-2: A Potential Inflammatory Pathogen in the Parkinsonian Dopaminergic System

Affiliations
  • 1School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea. srk75@knu.ac.kr
  • 2BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.
  • 3Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
  • 4Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, Korea.
  • 5Predictive Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea. whshin@kitox.re.kr
  • 6Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea.

Abstract

Although accumulating evidence suggests that microglia-mediated neuroinflammation may be crucial for the initiation and progression of Parkinson's disease (PD), and that the control of neuroinflammation may be a useful strategy for preventing the degeneration of nigrostriatal dopaminergic (DA) projections in the adult brain, it is still unclear what kinds of endogenous biomolecules initiate microglial activation, consequently resulting in neurodegeneration. Recently, we reported that the increase in the levels of prothrombin kringle-2 (pKr-2), which is a domain of prothrombin that is generated by active thrombin, can lead to disruption of the nigrostriatal DA projection. This disruption is mediated by neurotoxic inflammatory events via the induction of microglial Toll-like receptor 4 (TLR4) in vivo , thereby resulting in less neurotoxicity in TLR4-deficient mice. Moreover, inhibition of microglial activation following minocycline treatment, which has anti-inflammatory activity, protects DA neurons from pKr-2-induced neurotoxicity in the substantia nigra (SN) in vivo. We also found that the levels of pKr-2 and microglial TLR4 were significantly increased in the SN of PD patients compared to those of age-matched controls. These observations suggest that there may be a correlation between pKr-2 and microglial TLR4 in the initiation and progression of PD, and that inhibition of pKr-2-induced microglial activation may be protective against the degeneration of the nigrostriatal DA system in vivo . To describe the significance of pKr-2 overexpression, which may have a role in the pathogenesis of PD, we have reviewed the mechanisms of pKr-2-induced microglial activation, which results in neurodegeneration in the SN of the adult brain.

Keyword

Prothrombin kringle-2; Parkinson's disease; Microglia; Toll-like receptor 4

MeSH Terms

Adult
Animals
Brain
Humans
Mice
Microglia
Minocycline
Neurons
Parkinson Disease
Prothrombin*
Substantia Nigra
Thrombin
Toll-Like Receptor 4
Minocycline
Prothrombin
Thrombin
Toll-Like Receptor 4
Full Text Links
  • EN
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr