1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with anutomated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107:453–64.
2. Mardin CY, Horn FK, Jonas JB, Budde WM. Preperimetric glaucoma diagnosis by confocal scanning laser tomography of the optic disc. Br J Ophthamol. 1999; 83:299–304.
Article
3. Choplin NT, Lundy DC, Dreher AW. Differentiating patient with glaucoma from glaucoma suspects and normal subjects by nerve fiber laser assessment with scanning laser polarimetry. Ophthalmology. 1998; 105:2068–76.
4. Tannenbaum DP, Zangwill LM, Bowd C, et al. Relationship between visual filed testing and scanning laser polarimetry in patients with a large up-to disc ratio. Am J Ophthamol. 2001; 132:501–6.
5. Reus NJ, Colen TP, Lemij HG. Visualization of localized retinal nerve fiber layer defect with GDx with Individualized and with fixed compensation anterior segment birefringence. Ophthalmology. 2003; 110:1512–6.
6. Lee SY, Ha DW, Kook MS. Ability of scanning laser polarimetry(GDx) to discriminate among early glaucomatous, ocular hypertensive and normal eyes in the Korean population. Korean J Ophthalmol. 2004; 18:1–8.
7. Cho HS, Seong MC, Kook MS. Scanning laser polarimetry using variable corneal compensation in detection of localized visual field defects. J Korean Ophthamol Soc. 2005; 26:1498–1508.
8. Bagga H, Greenfield DS, Feuer W, Knighton RW. Scanning laser polarimetry with variable corneal compensation and optical coherent tomography in normal and glaucomatous eyes. Am J Ophthalmol. 2004; 135:521–9.
9. Greenfield D, Knighton R, Feuer WJ, et al. Correction for corneal polarization axis improves discriminating power of scanning lasers polarimetry. Am J Ophthalmol. 2002; 134:27–33.
10. Zhou Q, Weinreb RN. Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2002; 43:2221–8.
11. Lee JB, Cho YS, Choi YJ, Hong YJ. The prevalence of glaucoma in Korean adults. J Korean Ophthalmol Soc. 1993; 34:65–9.
12. Hwang JU, Jung JY, Cho HS, Kook MS. Discriminating ability of scanning laser polarimetry with variable corneal compensation in normal and glaucomatous eyes. J Korean Ophthalmol Soc. 2006; 47:253–63.
13. Horn FK, Jonas JB, Martus P, et al. Polarimetric measurement of retinal nerve fiber layer thickness in glaucoma diagnosis. J Glaucoma. 1999; 8:353–62.
Article
14. Harwerth RS, Dowson LC, Smith EL, et al. Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci. 2004; 45:3152–60.
Article
15. Caprioli J, Prum B, Zeyen T. Comparison of method to evaluate the optic nerve head and nerve fiber layer for glaucomatous change. Am J Ophthalmol. 1996; 121:659–67.
16. Tielsch JM, Katz J, Quigley HA, et al. Intraobserver and interobserver agreement in measurement of optic disc characteristics. Ophthalmology. 1988; 95:350–6.
Article
17. Resus NJ, Lemij HG. The relationship between Standard automated perimetry and GDx VCC measurements. Invest Ophthalmol Vis Sci. 2004; 45:840–5.
18. Weinerb RN, Bowd C, Zangwill LM. Glaucoma detection using scanning laser polarimetry with variable corneal polarization compensation. Arch Ophthalmol. 2003; 121:218–24.
Article
19. Chi QM, Tomita G, Inazuma K, et al. Evaluation of the effect of aging on the retinal nerve fiber layer thickness using scanning laser polarimetry. J Glaucoma. 1995; 4:406–13.
Article
20. Mederios FA, Zangwill LM, Bowd C, et al. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am J Ophthalmol. 2005; 139:1010–8.
21. Funaki S, Shirakashi M, Yaoeda K, et al. Specificity and sensitivity of glaucoma detection in the Japanese population using scanning laser polarimetry. Br J Ophthalmol. 2002; 86:70–4.
Article
22. Mederios FA, Zanwill LM, Bowd C, Weinerb RN. Comparison of the GDx-VCC scanning laser ophthalmoscope, and Stratus OCT optical coherent tomograph for the detection of glaucoma. Arch Ophthalmol. 2004; 122:827–37.
23. Resus NJ, Lemij HG. The relationship between Standard automated perimetry and GDx VCC measurements. Invest Ophthalmol Vis Sci. 2004; 45:840–5.