Tuberc Respir Dis.  2013 Nov;75(5):199-204.

Increasing Recovery of Nontuberculous Mycobacteria from Respiratory Specimens over a 10-Year Period in a Tertiary Referral Hospital in South Korea

Affiliations
  • 1Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. wjkoh@skku.edu
  • 2Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Abstract

BACKGROUND
The number of patients with pulmonary disease caused by nontuberculous mycobacteria (NTM) has been increasing worldwide. The aim of this study was to evaluate long-term trends in the NTM recovery rate from respiratory specimens over a 10-year period in a tertiary referral hospital in South Korea.
METHODS
We retrospectively reviewed the records of mycobacterial cultures of respiratory specimens at Samsung Medical Center from January 2001 to December 2011.
RESULTS
During the study period, 32,841 respiratory specimens from 10,563 patients were found to be culture-positive for mycobacteria. These included 12,619 (38%) Mycobacterium tuberculosis and 20,222 (62%) NTM isolates. The proportion of NTM among all positive mycobacterial cultures increased from 43% (548/1,283) in 2001 to 70% (3,341/4,800) in 2011 (p<0.001, test for trend). The recovery rate of NTM isolates from acid-fast bacilli smear-positive specimens increased from 9% (38/417) in 2001 to 64% (1,284/1,997) in 2011 (p<0.001, test for trend). The proportion of positive liquid cultures was higher for NTM than for M. tuberculosis (p<0.001). The most frequently isolated NTM were Mycobacterium avium-intracellulare complex (53%) and Mycobacterium abscessus-massiliense complex (25%).
CONCLUSION
The recovery rate of NTM from respiratory specimens in South Korea has increased steadily.

Keyword

Nontuberculous Mycobacteria; Mycobacterium tuberculosis; Epidemiology; Korea

MeSH Terms

Epidemiology
Humans
Korea
Lung Diseases
Mycobacterium
Mycobacterium avium Complex
Mycobacterium tuberculosis
Nontuberculous Mycobacteria*
Republic of Korea*
Retrospective Studies
Tertiary Care Centers*
Tuberculosis

Figure

  • Figure 1 Changes in the rate of recovery of mycobacteria from respiratory specimens. The annual percentage of nontuberculous mycobacteria (NTM) isolated (filled circles) from requested specimens increased, while that of Mycobacterium tuberculosis (open circles) remained stable.

  • Figure 2 Changes in the proportions of Mycobacterium tuberculosis and nontuberculous mycobacteria (NTM) of all positive mycobacterial cultures during the study period. The proportion of NTM increased significantly.

  • Figure 3 Changes in the proportion of Mycobacterium tuberculosis and nontuberculous mycobacteria (NTM) of acid-fast bacilli smear-positive respiratory specimens. The proportion of NTM increased rapidly during the study period. AFB: acid-fast bacilli.

  • Figure 4 Prevalence of nontuberculous mycobacteria (NTM) species in respiratory specimens. Mycobacterium avium-intracellulare complex (MAC) and Mycobacterium abscessus-massiliense complex accounted for the majority of the isolated NTM species.


Reference

1. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007; 175:367–416.
2. Daley CL, Griffith DE. Pulmonary non-tuberculous mycobacterial infections. Int J Tuberc Lung Dis. 2010; 14:665–671.
3. Andrejak C, Thomsen VO, Johansen IS, Riis A, Benfield TL, Duhaut P, et al. Nontuberculous pulmonary mycobacteriosis in Denmark: incidence and prognostic factors. Am J Respir Crit Care Med. 2010; 181:514–521.
4. Prevots DR, Shaw PA, Strickland D, Jackson LA, Raebel MA, Blosky MA, et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010; 182:970–976.
5. Thomson RM. NTM working group at Queensland TB Control Centre and Queensland Mycobacterial Reference Laboratory. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis. 2010; 16:1576–1583.
6. Simons S, van Ingen J, Hsueh PR, Van Hung N, Dekhuijzen PN, Boeree MJ, et al. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg Infect Dis. 2011; 17:343–349.
7. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012; 185:881–886.
8. Al-Houqani M, Jamieson F, Mehta M, Chedore P, May K, Marras TK. Aging, COPD, and other risk factors do not explain the increased prevalence of pulmonary Mycobacterium avium complex in Ontario. Chest. 2012; 141:190–197.
9. Kendall BA, Winthrop KL. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin Respir Crit Care Med. 2013; 34:87–94.
10. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: A NTM-NET collaborative study. Eur Respir J. 2013; 04. 08. [Epub]. http://dx.doi.org/10.1183/09031936.00149212.
11. van Crevel R, de Lange WC, Vanderpuye NA, van Soolingen D, Hoogkamp-Korstanje JA, van Deuren KM, et al. The impact of nontuberculous mycobacteria on management of presumed pulmonary tuberculosis. Infection. 2001; 29:59–63.
12. Jeon K, Koh WJ, Kwon OJ, Suh GY, Chung MP, Kim H, et al. Recovery rate of NTM from AFB smear-positive sputum specimens at a medical centre in South Korea. Int J Tuberc Lung Dis. 2005; 9:1046–1051.
13. Maiga M, Siddiqui S, Diallo S, Diarra B, Traore B, Shea YR, et al. Failure to recognize nontuberculous mycobacteria leads to misdiagnosis of chronic pulmonary tuberculosis. PLoS One. 2012; 7:e36902.
14. Park YS, Lee CH, Lee SM, Yang SC, Yoo CG, Kim YW, et al. Rapid increase of non-tuberculous mycobacterial lung diseases at a tertiary referral hospital in South Korea. Int J Tuberc Lung Dis. 2010; 14:1069–1071.
15. Yoo JW, Jo KW, Kim MN, Lee SD, Kim WS, Kim DS, et al. Increasing trend of isolation of non-tuberculous mycobacteria in a tertiary university hospital in South Korea. Tuberc Respir Dis. 2012; 72:409–415.
16. Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis. 1979; 119:107–159.
17. Choudhri S, Manfreda J, Wolfe J, Parker S, Long R. Clinical significance of nontuberculous mycobacteria isolates in a Canadian tertiary care center. Clin Infect Dis. 1995; 21:128–133.
18. Koh WJ, Kwon OJ, Jeon K, Kim TS, Lee KS, Park YK, et al. Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. Chest. 2006; 129:341–348.
19. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med. 2000; 161(4 Pt 1):1376–1395.
20. Kim JH, Kim YJ, Ki CS, Kim JY, Lee NY. Evaluation of Cobas TaqMan MTB PCR for detection of Mycobacterium tuberculosis. J Clin Microbiol. 2011; 49:173–176.
21. Koh WJ, Ko Y, Kim CK, Park KS, Lee NY. Rapid diagnosis of tuberculosis and multidrug resistance using a MGIT 960 system. Ann Lab Med. 2012; 32:264–269.
22. Lee SK, Lee EJ, Kim SK, Chang J, Jeong SH, Kang YA. Changing epidemiology of nontuberculous mycobacterial lung disease in South Korea. Scand J Infect Dis. 2012; 44:733–738.
23. Chihota VN, Grant AD, Fielding K, Ndibongo B, van Zyl A, Muirhead D, et al. Liquid vs. solid culture for tuberculosis: performance and cost in a resource-constrained setting. Int J Tuberc Lung Dis. 2010; 14:1024–1031.
24. Kim RD, Greenberg DE, Ehrmantraut ME, Guide SV, Ding L, Shea Y, et al. Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med. 2008; 178:1066–1074.
25. Andrejak C, Nielsen R, Thomsen VO, Duhaut P, Sorensen HT, Thomsen RW. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax. 2013; 68:256–262.
26. Koh WJ, Yu CM, Suh GY, Chung MP, Kim H, Kwon OJ, et al. Pulmonary TB and NTM lung disease: comparison of characteristics in patients with AFB smear-positive sputum. Int J Tuberc Lung Dis. 2006; 10:1001–1007.
27. Grubek-Jaworska H, Walkiewicz R, Safianowska A, Nowacka-Mazurek M, Krenke R, Przybylowski T, et al. Nontuberculous mycobacterial infections among patients suspected of pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis. 2009; 28:739–744.
28. Greco S, Girardi E, Navarra A, Saltini C. Current evidence on diagnostic accuracy of commercially based nucleic acid amplification tests for the diagnosis of pulmonary tuberculosis. Thorax. 2006; 61:783–790.
29. Ryoo SW, Shin S, Shim MS, Park YS, Lew WJ, Park SN, et al. Spread of nontuberculous mycobacteria from 1993 to 2006 in Koreans. J Clin Lab Anal. 2008; 22:415–420.
Full Text Links
  • TRD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr