1. Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997; 61:136–169.
Article
2. Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis. 1988; 10:Suppl 2. S274–S276.
Article
3. Sundqvist G, Johansson E, Sjögren U. Prevalence of black-pigmented bacteroides species in root canal infections. J Endod. 1989; 15:13–19.
Article
4. Griffee MB, Patterson SS, Miller CH, Kafrawy AH, Newton CW. The relationship of
Bacteroides melaninogenicus to symptoms associated with pulpal necrosis. Oral Surg Oral Med Oral Pathol. 1980; 50:457–461.
Article
5. Sundqvist GK, Eckerbom MI, Larsson AP, Sjögren UT. Capacity of anaerobic bacteria from necrotic dental pulps to induce purulent infections. Infect Immun. 1979; 25:685–693.
Article
6. Sundqvist G, Figdor D, Persson S, Sjögren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative retreatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998; 85:86–93.
Article
7. Hancock HH 3rd, Sigurdsson A, Trope M, Moiseiwitsch J. Bacteria isolated after unsuccessful endodontic treatment in a North American population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001; 91:579–586.
Article
8. Kayaoglu G, Ørstavik D. Virulence factors of
Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med. 2004; 15:308–320.
Article
9. Smith H. Questions about the behaviour of bacterial pathogens in vivo. Philos Trans R Soc Lond B Biol Sci. 2000; 355:551–564.
10. Angelichio MJ, Camilli A. In vivo expression technology. Infect Immun. 2002; 70:6518–6523.
11. Mahan MJ, Slauch JM, Hanna PC, Camilli A, Tobias JW, Waldor MK, Mekalanos JJ. Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis. 1993; 2:263–268.
12. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995; 269:400–403.
Article
13. Valdivia RH, Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 1997; 277:2007–2011.
Article
14. Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y, LaBaer J. Next-generation high-density self-assembling functional protein arrays. Nat Methods. 2008; 5:535–538.
Article
15. Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, Handfield M, Ryan ET. In vivo induced antigen technology (IVIAT). Cell Microbiol. 2005; 7:1–9.
16. Handfield M, Hillman JD.
In vivo induced antigen technology (IVIAT) and change mediated antigen technology (CMAT). Infect Disord Drug Targets. 2006; 6:327–334.
Article
17. Lee SW, Hillman JD, Progulske-Fox A. The hemagglutinin genes hagB and hagC of
Porphyromonas gingivalis are transcribed
in vivo as shown by use of a new expression vector. Infect Immun. 1996; 64:4802–4810.
Article
18. Yoo JY, Kim HC, Zhu W, Kim SM, Sabet M, Handfield M, Hillman J, Progulske-Fox A, Lee SW. Identification of
Tannerella forsythia antigens specifically expressed in patients with periodontal disease. FEMS Microbiol Lett. 2007; 275:344–352.
Article
19. Handfield M, Brady LJ, Progulske-Fox A, Hillman JD. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol. 2000; 8:336–339.
Article
20. Cheng S, Clancy CJ, Checkley MA, Handfield M, Hillman JD, Progulske-Fox A, Lewin AS, Fidel PL, Nguyen MH. Identification of
Candida albicans genes induced during thrush offers insight into pathogenesis. Mol Microbiol. 2003; 48:1275–1288.
Article
21. Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, Hillman JD, Progulske-Fox A, Handfield M, Ryan ET, Calderwood SB. Use of
in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with
Vibrio cholerae. Proc Natl Acad Sci U S A. 2003; 100:8508–8513.
Article
22. Deb DK, Dahiya P, Srivastava KK, Srivastava R, Srivastava BS. Selective identification of new therapeutic targets of
Mycobacterium tuberculosis by IVIAT approach. Tuberculosis (Edinb). 2002; 82:175–182.
Article
23. Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH. Characterization and pathogenic significance of
Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun. 2003; 71:5461–5471.
Article
24. John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, Sarracino D, Progulske-Fox A, Hillman JD, Handfield M, Tarr PI, Calderwood SB. Use of
in vivo-induced antigen technology for identification of
Escherichia coli O157:H7 proteins expressed during human infection. Infect Immun. 2005; 73:2665–2679.
Article
25. Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, Peppercorn AF, Handfield M, Hillman JD, Qadri F, Calderwood SB, Hohmann E, Breiman RF, Brooks WA, Ryan ET. Identification of
in vivo-induced bacterial protein antigens during human infection with
Salmonella enterica serovar Typhi. Infect Immun. 2006; 74:5161–5168.
Article
26. Salim KY, Cvitkovitch DG, Chang P, Bast DJ, Handfield M, Hillman JD, de Azavedo JC. Identification of group A
Streptococcus antigenic determinants upregulated
in vivo. Infect Immun. 2005; 73:6026–6038.
Article
27. Cao SL, Progulske-Fox A, Hillman JD, Handfield M.
in vivo induced antigenic determinants of
Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett. 2004; 237:97–103.
Article
28. Song YH, Kozarov EV, Walters SM, Cao SL, Handfield M, Hillman JD, Progulske-Fox A. Genes of periodontopathogens expressed during human disease. Ann Periodontol. 2002; 7:38–42.
Article
29. Gu H, Zhu H, Lu C. Use of
in vivo-induced antigen technology (IVIAT) for the identification of
Streptococcus suis serotype 2
in vivo-induced bacterial protein antigens. BMC Microbiol. 2009; 9:201.
Article
30. Lee HR, Rhyu IC, Kim HD, Jun HK, Min BM, Lee SH, Choi BK.
In vivo-induced antigenic determinants of
Fusobacterium nucleatum subsp. nucleatum. Mol Oral Microbiol. 2011; 26:164–172.
Article
31. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of
Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol. 2003; 52:403–408.
Article
32. Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J. Quantification of expression of
Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during
in vitro growth and under different conditions. J Bacteriol. 2001; 183:7094–7101.
Article
33. Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T. Quantification of the carbazole 1,9a-dioxygenase gene by real-time competitive PCR combined with coextraction of internal standards. FEMS Microbiol Lett. 2001; 202:51–57.
Article
34. Espirito Santo C, Taudte N, Nies DH, Grass G. Contribution of copper ion resistance to survival of
Escherichia coli on metallic copper surfaces. Appl Environ Microbiol. 2008; 74:977–986.
Article
35. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011; 77:1541–1547.
Article
36. Walters S, Belanger M, Rodrigues PH, Whitlock J, Progulske-Fox A. A member of the peptidase M48 superfamily of Porphyromonas gingivalis is associated with virulence in vitro and in vivo. J Oral Microbiol. 2009; 1.
37. Yuan L, Rodrigues PH, Bélanger M, Dunn W Jr, Progulske-Fox A. The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo. FEMS Immunol Med Microbiol. 2007; 51:388–398.
38. Yuan L, Rodrigues PH, Bélanger M, Dunn WA Jr, Progulske-Fox A.
Porphyromonas gingivalis htrA is involved in cellular invasion and
in vivo survival. Microbiology. 2008; 154:1161–1169.
Article