1. H⊘yer M, Swaminath A, Bydder S, et al. Radiotherapy for liver metastases: A review of evidence. Int J Radiat Oncol Biol Phys. 82(3):1047–1057. 2012.
2. Lock MI, H⊘yer M, Bydder SA, et al. An international survey on liver metastases radiotherapy. Acta Oncologica. 51:568–574. 2012.
Article
3. Liu LX, Zhang WH, Jiang HC. Current treatment for liver metastases from colorectal cancer. World J Gastroenterol. 9(2):193–200. 2003.
Article
4. Gasent Blesa JM, Dawson LA. Options for radiotherapy in the treatment of liver metastases. Clin Transl Oncol. 10:638–645. 2008.
Article
5. Parlak C, Topkan E, Sonmez S, Onal C, Reyhan M. CTversus coregistered FDG-PET/CT-based radiation therapy plans for conformal radiotherapy ib colorectal liver metastases: a dosimetric comparison. Jpn J Radiol. 30(8):628–634. 2012.
6. Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging- guided radiation therapy treatment planning. Acad Radiol. 16(9):L1108–1133. 2009.
7. Kao CH, Hsieh TC, Yu CY, et al. 18F-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck cancer: a correlation study between suitable uptake value threshold and tumor parameters. Radiat Oncol. 76(5):2010.
Article
8. Wanet M, Lee JA, Weynard B, et al. Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: a comparison with threshold-based approaches CT and surgical specimens. Radiother Oncol. 98(1):117–125. 2011.
Article
9. Chua SC, Groves AM, Kayani I, et al. The impact of 18FFDG PET/CT in patients with liver metastases. Eur J Nucl Med Mol Imaging. 34:1906–1914. 2007.
Article
10. Bipat S, van Leeuwen MS, Comans EF, et al. Colorectal liver metastases: CT, MR imaging and PET for diagnosismeta- analysis. Radiology. 237(1):123–131. 2005.
11. Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): A metaanalysis. Radiology. 224(3):748–756. 2002.
Article
12. Grégoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-based treatment planning in radiotherapy: A new standard? J Nucl Med. 48(1):68S–77S. 2007.
13. Lee JA. Segmentation of positron emission tomography image: some recommendations for target delineation in radiation oncology. Radiother Oncol. 96(3):302–307. 2010.
14. Zaidi H, Naqa IE. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Imaging. 37(11):2165–2187. 2010.
Article
15. Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med. 52(11):1690–1697. 2011.
Article
16. Vees H, Senthamizhchelvan S, Miralbell R, Wever DC, Ratib O, Zaidi H. Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in highgrade glioma patients. Eur J Nucl Med Mol Imaging. 36(2):182–193. 2009.
Article
17. Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 67(3):720–726. 2007.
Article
18. Nestle U, Kermp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 46(8):1342–1348. 2005.
19. van Baardwijk A, Baumert BG, Bosmans G, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev. 32:245–260. 2006.
Article
20. Geets X, Lee JA, Lonneux M, Grégoire V. A gradientbased method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imageing. 34(9):1427–1438. 2007.
Article
21. Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 61(5):1385–1392. 2005.
22. Bassi MC, Turri L, Sacchetti G, et al. FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys. 70(5):1423–1426. 2008.
Article
23. Day E, Betler J, Parda D, et al. A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys. 36(10):4349–4358. 2009.
Article
24. Graves EE, Quon A, Loo BW Jr. RT_Image: an opensource tool for investigating PET in radiation oncology. Technol Cancer Res Treat. 6(2):111–121. 2007.
Article
25. Gonzalez RC, Woods RE. 디지털 영상처리 3판, 유현중 등: 피어슨에듀케이션코리아. 서울(2009), pp. 839–900.
26. Bring J. How to standardize regression coefficients. Am Stat. 48(3):209–213. 1994.
Article
27. Ariff B, Lloyd CR, Khan S, et al. Imaging of liver cancer. World J Gastroenterol. 15(11):1289–1300. 2009.
Article
28. Biehl KJ, Kong FM, Dehdashti F, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med. 47(11):1808–1812. 2006.
29. Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging. 38:987–991. 2011.
Article
30. Ling CC, Humm J, Larson S, et al. Towards multiidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Bio Phys. 47(3):551–560. 2000.
31. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional autometic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol. 69(3):247–250. 2003.
32. Brambilla M, Matheoud R, Secco C, Loi G, Kerengill M, Inglese E. Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of targetto- background ratio and target size. Med Phys. 35(4):1207–1213. 2008.