Nat Prod Sci.  2016 Mar;22(1):64-69. 10.20307/nps.2016.22.1.64.

Identification of Antioxidative Constituents from Polygonum aviculare using LC-MS Coupled with DPPH Assay

Affiliations
  • 1College of Pharmacy, Korea University, Sejong 339-700, Korea. kylee11@korea.ac.kr
  • 2College of Pharmacy, Keimyung University, Daegu 704-701, Korea.

Abstract

A method for simultaneously identifying antioxidative compounds was developed using time-based LC-MS coupled with DPPH assay regardless of the time consuming process. The methanolic extract of Polygonum aviculare (Polygonaceae) showed significant DPPH radical scavenging activity. Time-based DPPH assay for simultaneous identification of active compounds from the extracts of P. aviculare was used. Major peaks of ethyl acetate fraction of P. aviculare showed high DPPH radical scavenging activity. A simple phenolic compound (1) and six flavonoids (2-7) were isolated from the ethyl acetate fraction of P. aviculare by silica gel and sephadex LH-20 column chromatography. The structures of seven compounds were determined to be protocatechuic acid (1), catechin (2), myricitrin (3), epicatechin-3-O-gallate (4), avicularin (5), quercitrin (6), and juglanin (7) based on the analysis of the 1H-NMR, 13C-NMR and ESI-MS data. All compounds exhibited significant antioxidant activity on DPPH assay and active compounds were well correlated with predicted one.

Keyword

Polygonum aviculare; Flavonoids; LC-MS; DPPH assay

MeSH Terms

Catechin
Chromatography
Flavonoids
Methanol
Phenol
Polygonum*
Silica Gel
Catechin
Flavonoids
Methanol
Phenol
Silica Gel

Figure

  • Fig. 1. HPLC chromatogram (254 nm) and time-dependent DPPH assay results of EtOAc fraction from P. aviculare (A), expansion of the HPLC chromatogram between 11–16 min (B), UV spectrum of each peaks (C).

  • Fig. 2. Structures of the compounds isolated from P. aviculare.


Reference

(1). Qu F. N., Qi L. W., Wei Y. J., Wen X. D., Yi L., Luo H. W., Li P.Biol. Pharm. Bull. 2008; 31:501–506.
(2). Nuengchamnong N., Krittasilp K., Ingkaninan K.Food Chem. 2011; 127:1287–1293.
(3). Nuengchamnong N., Krittasilp K., Ingkaninan K.Food Chem. 2009; 117:750–756.
(4). Nugroho A., Kim E. J., Choi J. S., Park H. J. J.Pharm. Biomed. Anal. 2014; 89:93–98.
(5). Robu T., Robu B., Robu S.Environ. Eng. Manag. J. 2008; 7:579–588.
(6). Granica S., Piwowarski J. P., Pop³awska M., Jakubowska M. J.Pharm. Biomed. Anal. 2013; 72:216–222.
(7). Park S. H., Sung Y. Y., Nho K. J., Kim H. K. J.Ethnopharmacol. 2014; 151:1109–1115.
(8). Sung Y. Y., Yoon T., Yang W. K., Kim S. J., Kim D. S., Kim H. K.Evid. Based Complement Alternat. Med. 2013; 2013:626397.
(9). Hsu C. Y.Biol. Res. 2006; 39:281–288.
(10). Granica S., Czerwi ska M. E., Zy y ska-Granica B., Kiss A. K.Fitoterapia. 2013; 91:180–188.
(11). Nguyen P. H., Zhao B. T., Lee J. H., Kim Y. H., Min B. S., Woo M. H.Bull. Korean Chem. Soc. 2014; 35:1763–1768.
(12). Seto R., Nakamura H., Nanjo F, Hara Y.Biosci. Biotech. Biochem. 1997; 61:1434–1439.
(13). Aderogba M. A, Ndhlala A. R, Rengasamy K. R, Van Staden J.Molecules. 2013; 18:12633–12644.
(14). Kim H. J., Woo E. R., Park H. K. J.Nat. Prod. 1994; 57:581–586.
(15). Kwon D. J., Bae Y. S.Chem. Nat. Compd. 2013; 49:131–132.
(16). Park B. J., Matsuta T., Kanazawa T., Park C. H., Chang K. J., Onjo M.Chem. Nat. Compd. 2012; 48:477–479.
(17). Magiera S., Baranowska I., Lautenszleger A. J.Pharm. Biomed. Anal. 2015; 102:468–475.
(18). de Beck P. O., Duoux M. G., Cartier G., Mariotte A. M.Phytochemistry. 1998; 47:1171–1173.
(19). Sroka Z., Cisowski W.Food Chem. Toxicol. 2003; 41:753–758.
Full Text Links
  • NPS
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr