Korean J Anesthesiol.  1997 Dec;33(6):1029-1036. 10.4097/kjae.1997.33.6.1029.

The Inhibition of Stress-Induced c-fos Expression by Superior Cervical Ganglion Block in Rat Brain

Abstract

BACKGROUND: Using c-fos expression one of the immediate early gene, as a marker of altered neuronal response, we investigated the effect of superior cervical ganglion block (SCGB) exhibiting the same effect of SGB of human on the activity of several brain regions which are considered as located on autonomic neural pathway and neuroendocrine axis in rat. METHOD: The 48 Sprague-Dawley strain rats were divided into 4 groups, as saline/stress (control) group, SCGB/stress (tested) group, saline group, SCGB group. Superior cervical ganglion block was conducted in the SCGB/stress group and SCGB group while saline/stress and saline group were sham operated. After then restraint stress was imposed on the animals of SCGB/stress group and saline/stress group. And 2 hour after injection (saline, SCGB group) or restraint stress (saline/stress, SCGB/stress group), c-fos protein (Fos) was localized by immunocytochemistry.
RESULTS
Much stronger Fos immunoreactivity was induced in the several brain region of control group rats compared to other three groups and the numbers of Fos positive cell count of tested group were significantly decreased in paraventricular hypothalamic nucleus (p<0.01), A5 (p<0.01), raphe pallidus (p<0.05), nucleus tractus solitaius (p<0.01) compared to control group.
CONCLUSION
This study demonstrate that superior cervical ganglion block attenuates stress induced neuronal activities of paraventricular hypothalamic nucleus, A5, raphe pallidus, nucleus tractus solitarius.

Keyword

A5, c-fos, Locus coeruleus; Nucleus tractus solitarius; Paraventricular hypothalamic nucleus; Raphe pallidus; Restraint stress

MeSH Terms

Animals
Axis, Cervical Vertebra
Brain*
Cell Count
Genes, vif
Humans
Immunohistochemistry
Neural Pathways
Neurons
Paraventricular Hypothalamic Nucleus
Rats*
Rats, Sprague-Dawley
Solitary Nucleus
Superior Cervical Ganglion*
Full Text Links
  • KJAE
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr