Korean J Orthod.  2008 Oct;38(5):304-313. 10.4041/kjod.2008.38.5.304.

Factors influencing primary stability of miniplate anchorage: a three-dimensional finite element analysis

Affiliations
  • 1Department of Orthodontics, School of Dentistry, Kangnung National University, Korea. ortho0328@hanmail.net
  • 2Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Biomedical Sciences, Nagasaki University, Japan.

Abstract


OBJECTIVE
The purpose of this study was to evaluate the stress distribution in bone and displacement distribution of the miniscrew according to the length and number of the miniscrews used for the fixation of miniplate, and the direction of orthodontic force.
METHODS
Four types of finite element models were designed to show various lengths (6 mm, 4 mm) and number (3, 2) of 2 mm diameter miniscrew used for the fixation of six holes for a curvilinear miniplate. A traction force of 4 N was applied at 0degrees, 30degrees, 60degrees and 90degrees to an imaginary axis connecting the two most distal unfixed holes of the miniplate.
RESULTS
The smaller the number of the miniscrew and the shorter the length of the miniscrew, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. Most von Mises stress in the bone was absorbed in the cortical portion rather than in the cancellous portion. The more the angle of the applied force to the imaginary axis increased, the more the maximum von Mises stress in the bone and maximum displacement of the miniscrew increased. The maximum von Mises stress in the bone and maximum displacement of the miniscrew were measured around the most distal screw-fixed area.
CONCLUSIONS
The results suggest that the miniplate system should be positioned in the rigid cortical bone with 3 miniscrews of 2 mm diameter and 6 mm length, and its imaginary axis placed as parallel as possible to the direction of orthodontic force to obtain good primary stability.

Keyword

Miniplate; Anchorage; Primary stability; Finite element analysis

MeSH Terms

Axis, Cervical Vertebra
Displacement (Psychology)
Finite Element Analysis
Traction

Figure

  • Fig 1. Three-dimensional finite element model consisting of miniplate system and bone.

  • Fig 2. Von Mises stress distributions of the cortical and cancellous bone of all models (a-d).

  • Fig 3. Displacement distributions of all models (A-D).


Cited by  1 articles

Effect of bite force on orthodontic mini-implants in the molar region: Finite element analysis
Hyeon-Jung Lee, Kyung-Sook Lee, Min-Ji Kim, Youn-Sic Chun
Korean J Orthod. 2013;43(5):218-224.    doi: 10.4041/kjod.2013.43.5.218.


Reference

1.Turley PK., Kean C., Schur J., Stefanac J., Gray J., Hennes J, et al. Orthodontic force application to titanium endosseous implants. Angle Orthod. 1988. 58:151–62.
2.Linder-Aronson S., Nordenram A., Anneroth G. Titanium implant anchorage in orthodontic treatment an experimental in-vestigaton in monkeys. Eur J Orthod. 1990. 12:414–9.
3.Roberts WE., Helm FR., Marshall KJ., Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod. 1989. 59:247–56.
4.Odman J., Lekholm U., Jemt T., Thilander B. Osseointegrated implants as orthodontic anchorage in the treatment of partially edenturous adult patients. Eur J Orthod. 1994. 16:187–201.
5.Kokich VG. Managing complex orthodontic problem: the use of implants for anchorage. Semin Orthod. 1996. 2:153–60.
6.Creekmore TD., Eklund MK. The possibility of skeletal anchorage. J Clin Orthod. 1983. 17:266–9.
7.Costa A., Raffainl M., Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg. 1998. 13:201–9.
8.Park HS. The skeletal cortical anchorage using titanium micto-screw implants. Korean J Orthod. 1999. 29:699–706.
9.Ko DI., Lim SH., Kim KW. Treatment of occlusal plane canting using miniscrew anchorage. World J Orthod. 2006. 7:269–78.
10.Xun C., Zeng X., Wang X. Microscrew anchorage in skeletal anterior open-bite treatment. Angle Orthod. 2007. 77:47–56.
Article
11.Umemori M., Sugawara J., Mitani H., Nagasaka H., Kawamura H. Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop. 1999. 115:166–74.
Article
12.Sugawara J., Nishimura M. Minibone plates: the skeletal anchorage system. Semin Orthod. 2005. 11:47–56.
Article
13.Singer SL., Henry PJ., Rosenberg I. Osseointegrated implants as an adjunct to facemask therapy: a case report. Angle Orthod. 2000. 70:253–62.
14.Enacar A., Giray B., Pehlivanoglu M., Iplikcioglu H. Facemask therapy with rigid anchorage in a patient with maxillary hypoplasia and severe oligodontia. Am J Orthod Dentofacial Orthop. 2003. 123:571–7.
Article
15.Cha BK., Lee NK., Choi DS. Maxillary protraction treatment of skeletal Class III children using miniplate anchorage. Korean J Orthod. 2007. 37:73–84.
16.Park HS., Jeong SH., Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2006. 130:18–25.
Article
17.Motoyoshi M., Hirabayashi M., Uemura M., Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006. 17:109–14.
Article
18.Chen CH., Chang CS., Hsieh CH., Tseng YC., Shen YS., Huang IY, et al. The use of microimplants in orthodontic anchorage. J Oral Maxillofac Surg. 2006. 64:1209–13.
Article
19.Lim JW., Kim WS., Kim IK., Son CY., Byun HI. Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness. Korean J Orthod. 2003. 33:11–20.
20.Byoun NY., Nam EH., Yoon AY., Kim IK. Three-dimensional finite element analysis for stress distribution on the diameter of orthodontic mini-implants and insertion angle to the bone surface. Korean J Orthod. 2006. 36:178–87.
21.Miyawaki S., Koyama I., Inoue M., Mishima K., Sugahara T., Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2003. 124:373–8.
Article
22.Kircelli BH., Pektas ZO., Uckan S. Orthopedic protraction with skeletal anchorage in a patient with maxillary hypoplasia and hypodontia. Angle Orthod. 2006. 76:156–63.
23.Zhou YH., Ding P., Lin Y., Qiu LX. Facemask therapy with miniplate implant anchorage in a patient with maxillary hypoplasia. Chin Med J (Engl). 2007. 120:1372–5.
Article
24.Kim JH., Joo JY., Park YW., Cha BK., Kim SM. Study of maxillary cortical bone thickness for skeletal anchorage system in Korean. J Korean Oral Maxillofac Surg. 2002. 28:249–55.
25.Geng JP., Tan KB., Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001. 85:585–98.
Article
26.Stegaroiu R., Sato T., Kusakari H., Miyakawa O. Influence of restoration type on stress distribution in bone around implants: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 1998. 13:82–90.
27.Erkmen E., Simşek B., Yücel E., Kurt A. Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. Br J Oral Maxillofac Surg. 2005. 43:97–104.
Article
28.Chen YH., Chang HH., Chen YJ., Lee D., Chiang HH., Yao CC. Root contact during insertion of miniscrews for orthodontic anchorage increases the failure rate: an animal study. Clin Oral Implants Res. 2008. 19:99–106.
Article
29.Kokich VG., Shapiro PA., Oswald R., Koskinen-Moffett L., Clarren SK. Ankylosed teeth as abutments for maxillary protraction: a case report. Am J Orthod. 1985. 88:303–7.
Article
30.Cha BK., Park YW., Lee NK., Lee YH. Two new modalities for maxillary protraction therapy: international ankylosis and distraction osteogenesis. J Korean Dent Assoc. 2000. 38:997–1007.
31.Schwimmer A., Greenberg AM., Kummer F., Kaynar A. The effect of screw size and insertion technique on the stability of the mandibular sagittal split osteotomy. J Oral Maxillofac Surg. 1994. 52:45–8.
Article
32.Tharanon W. Comparison between the rigidity of bicortical screws and a miniplate for fixation of a mandibular setback after a simulated bilateral sagittal split osteotomy. J Oral Maxil-lofac Surg. 1998. 56:1055–8.
Article
33.Edwards RC., Kiely KD., Eppley BL. Fixation of bimaxillary osteotomies with resorbable plates and screws: experience in 20 consecutive cases. J Oral Maxillofac Surg. 2001. 59:271–6.
Article
34.Maurer P., Holweg S., Schubert J. Finite-element-analysis of different screw-diameters in the sagittal split osteotomy of the mandible. J Craniomaxillofac Surg. 1999. 27:365–72.
Article
35.Rohlmann A., Mossner U., Bergmann G., Kolbel R. Finite-element-analysis and experimental investigation in a femur with hip endoprosthesis. J Biomech. 1983. 16:727–42.
Article
36.Tanne K., Miyasaka J., Yamagata Y., Sachdeva R., Tsutsumi S., Sakuda M. Three-dimensional model of the human craniofacial skeleton: method and preliminary results using finite element analysis. J Biomed Eng. 1988. 10:246–52.
Article
37.Motoyoshi M., Yano S., Tsuruoka T., Shimizu N. Biomechanical effect of abutment on stability of orthodontic mini-implant. A finite element analysis. Clin Oral Implants Res. 2005. 16:480–5.
38.Motoyoshi M., Yoshida T., Ono A., Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007. 22:779–84.
39.Yoon BS., Choi BH., Lee WY., Kim KN., Shim HB., Park JH. A study on titanium miniscrew as orthodontic anchorage; an experimental investigation in dogs. Korean J Orthod. 2001. 31:517–23.
40.Frost HM. A 2003 update of bone physiology and Wolff's law for clinicians. Angle Orthod. 2004. 74:3–15.
41.Morris HF., Winkler S., Ochi S., Kanaan A. A new implant designed to maximize contact with trabecular bone: survival to 18 months. J Oral Implantol. 2001. 27:164–73.
Article
Full Text Links
  • KJOD
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr