1. Wright SP, Verouhis D, Gamble G, Swedberg K, Sharpe N, Doughty RN. Factors influencing the length of hospital stay of patients with heart failure. Eur J Heart Fail. 2003; 5(2):201–209.
Article
2. Gomez V, Abasolo JE. Using data mining to describe long hospital stays. Paradigma. 2009; 3(1):1–10.
3. Lim A, Tongkumchum P. Methods for analyzing hospital length of stay with application to inpatients dying in Southern Thailand. Glob J Health Sci. 2009; 1(1):27–38.
Article
4. Chang KC, Tseng MC, Weng HH, Lin YH, Liou CW, Tan TY. Prediction of length of stay of first-ever ischemic stroke. Stroke. 2002; 33(11):2670–2674.
Article
5. Jiang X, Qu X, Davis L. Using data mining to analyze patient discharge data for an urban hospital. In : Proceedings of the 2010 International Conference on Data Mining; 2010 Jul 12-15; Las Vegas, NV. p. 139–144.
6. Isken MW, Rajagopalan B. Data mining to support simulation modeling of patient flow in hospitals. J Med Syst. 2002; 26(2):179–197.
7. Walczak S, Scorpio RJ, Pofahl WE. In : Cook DJ, editor. Predicting hospital length of stay with neural networks. Proceedings of the Eleventh International FLAIRS Conference; 1998 May 18-20; Sanibel Island, FL. Menlo Park, CA: AAAI Press;1998. p. 333–337.
8. Rowan M, Ryan T, Hegarty F, O'Hare N. The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artif Intell Med. 2007; 40(3):211–221.
Article
9. Robinson GH, Davis LE, Leifer RP. Prediction of hospital length of stay. Health Serv Res. 1966; 1(3):287–300.
10. Arab M, Zarei A, Rahimi A, Rezaiean F, Akbari F. Analysis of factors affecting length of stay in public hospitals in Lorestan Province, Iran. Hakim Res J. 2010; 12(4):27–32.
11. Blais MA, Matthews J, Lipkis-Orlando R, Lechner E, Jacobo M, Lincoln R, et al. Predicting length of stay on an acute care medical psychiatric inpatient service. Adm Policy Ment Health. 2003; 31(1):15–29.
12. Tu JV, Guerriere MR. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Proc Annu Symp Comput Appl Med Care. 1992; 31(1):666–672.
Article
13. Lin CL, Lin PH, Chou LW, Lan SJ, Meng NH, Lo SF, et al. Model-based prediction of length of stay for rehabilitating stroke patients. J Formos Med Assoc. 2009; 108(8):653–662.
Article
14. Wrenn J, Jones I, Lanaghan K, Congdon CB, Aronsky D. Estimating patient's length of stay in the Emergency Department with an artificial neural network. AMIA Annu Symp Proc. 2005; 2005:1155.
15. Stoskopf C, Horn SD. Predicting length of stay for patients with psychoses. Health Serv Res. 1992; 26(6):743–766.
16. Negassa A, Monrad ES. Prediction of length of stay following elective percutaneous coronary intervention. ISRN Surg. 2011; 2011:714935.
Article
17. Jilani TA, Yasin H, Yasin M, Ardil C. Acute coronary syndrome prediction using data mining techniques: an application. Int J Inf Math Sci. 2009; 5(4):295–299.
18. Liu P, Lei L, Yin J, Zhang W, Naijun W, El-Darzi E. Healthcare data mining: predicting inpatient length of stay. In : Proceedings of the 3rd International IEEE Conference Intelligent Systems; 2006 Sep 4-6; London, UK. p. 832–837.
19. Kudyba S, Gregorio T. Identifying factors that impact patient length of stay metrics for healthcare providers with advanced analytics. Health Informatics J. 2010; 16(4):235–245.
Article
20. Rani KU. Analysis of heart diseases dataset using neural network approach. Int J Data Min Knowl Manag Process. 2011; 1(5):1–8.
Article
21. Kamath C. Scientific data mining: a practical perspective. Philadelphia (PA): Society for Industrial and Applied Mathematics;2009.
22. Son YJ, Kim HG, Kim EH, Choi S, Lee SK. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res. 2010; 16(4):253–259.
Article
23. Kajabadi A, Saraee MH, Asgari S. Data mining cardiovascular risk factors. In : Proceedings of International Conference on Application of Information and Communication Technologies; 2009 Oct 14-16; Baku, Azerbaijan. p. 1–5.
24. Suryawanshi RD, Thakore DM. Classification techniques of datamining to identify class of the text with fuzzy logic. In : Proceedings of 2012 International Conference on Information and Computer Applications; 2012 Feb 17-18; Hong Kong. p. 263–267.
25. Sitar-Taut DA, Sitar-Taut AV. Overview on how data mining tools may support cardiovascular disease prediction. J Appl Comput Sci. 2010; 4(8):57–62.
26. Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation. 1996; 94(5):1175–1192.
Article
27. Kang JO, Chung SH, Suh YM. Prediction of hospital charges for the cancer patients with data mining techniques. J Korean Soc Med Inform. 2009; 15(1):13–23.
Article
28. Yaghini M. Data mining SPSS Clementine 12.0: 4. Handling missing and Clementine outliers values. Tehran, Iran: IUST;2010.
29. Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Miller WG, et al. Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med. 2006; 36(12):1351–1377.
Article
30. Malliaris ME, Pappas M. Revenue generation in hospital foundations: neural network versus regression model recommendations. Int J Manag Inf Syst. 2011; 15(1):59–66.
Article
31. Appelros P. Prediction of length of stay for stroke patients. Acta Neurol Scand. 2007; 116(1):15–19.
Article
32. Ghoson AM. Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner: a comparative analysis. Int J Manag Inf Syst. 2010; 14(3):57–70.
Article
33. Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform. 2008; 77(2):81–97.
Article
34. McMullan R, Silke B, Bennett K, Callachand S. Resource utilisation, length of hospital stay, and pattern of investigation during acute medical hospital admission. Postgrad Med J. 2004; 80(939):23–26.
Article
35. Vahidi R, Kushavar H, Khodayari R. Factors affecting coronary artery patients hospital length of stay of Tabriz Madani hospital 2005-2006. J Health Adm. 2006; 9(25):63–68.