1. Di Somma S, Paladino L, Vaughan L, Lalle I, Magrini L, Magnanti M. Overcrowding in emergency department: an international issue. Intern Emerg Med. 2015; 10(2):171–175.
Article
2. Siciliani L, Moran V, Borowitz M. Measuring and comparing health care waiting times in OECD countries. Health Policy. 2014; 118(3):292–303.
Article
3. Barua B, Esmail N, Jackson T. The effect of wait times on mortality in Canada. Vancouver: Fraser Institute;2014.
4. Richards JR, van der Linden MC, Derlet RW. Providing care in emergency department hallways: demands, dangers, and deaths. Adv Emerg Med. 2014; 2014:495219.
Article
5. Cyganska M. The impact factors on the hospital high length of stay outliers. Procedia Econ Financ. 2016; 39:251–255.
Article
6. Ithman MH, Goplarkrishna G, Beck NC, Das J, Petroski G. Predictors of length of stay in an acute psychiatric hospital. J Biosaf Health Educ. 2014; 2(2):1000119.
Article
7. Pakzad H, Thevendran G, Penner MJ, Qian H, Younger A. Factors associated with longer length of hospital stay after primary elective ankle surgery for end-stage ankle arthritis. J Bone Joint Surg Am. 2014; 96(1):32–39.
Article
8. Gruenberg DA, Shelton W, Rose SL, Rutter AE, Socaris S, McGee G. Factors influencing length of stay in the intensive care unit. Am J Crit Care. 2006; 15(5):502–509.
Article
9. Clarke A, Rosen R. Length of stay. How short should hospital care be. Eur J Public Health. 2001; 11(2):166–170.
Article
10. Mak G, Grant WD, McKenzie JC, McCabe JB. Physicians, ability to predict hospital length of stay for patients admitted to the hospital from the emergency department. Emerg Med Int. 2012; 2012:824674.
Article
11. Han J, Pei J, Kamber M. Data mining: concepts and techniques. Amsterdam: Morgan Kaufmann;2012.
12. Jiang X, Qu X, Davis L. Using data mining to analyze patient discharge data for an urban hospital. In : Proceedings of the 2010 International Conference on Data Mining; 2010 Jul 12-15; Las Vegas, NV: p. 139–144.
13. Rowan M, Ryan T, Hegarty F, O'Hare N. The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artif Intell Med. 2007; 40(3):211–221.
Article
14. Tu JV, Guerriere MR. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comput Biomed Res. 1993; 26(3):220–229.
Article
15. Hachesu PR, Ahmadi M, Alizadeh S, Sadoughi F. Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthc Inform Res. 2013; 19(2):121–129.
Article
16. Miyata H, Hashimoto H, Horiguchi H, Matsuda S, Motomura N, Takamoto S. Performance of in-hospital mortality prediction models for acute hospitalization: hospital standardized mortality ratio in Japan. BMC Health Serv Res. 2008; 8:229.
Article
17. Son YJ, Kim HG, Kim EH, Choi S, Lee SK. Application of support vector machine for prediction of medication adherence in heart failure patients. Healthc Inform Res. 2010; 16(4):253–259.
Article
18. Ahn M, Choi M, Kim Y. Factors associated with the timeliness of electronic nursing documentation. Healthc Inform Res. 2016; 22(4):270–276.
Article
19. Sushmita S, Khulbe G, asan A, Newman S, Ravindra P, Basu Roy S, et al. Predicting 30-day risk and cost of “All-Cause” hospital readmissions. In : The Workshops at the 30th AAAI Conference on Artificial Intelligence: Expanding the Boundaries of Health Informatics Using AI; 2016 Feb 12-17; Phoenix, AZ:
20. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Sci Data. 2016; 3:160035.
Article
21. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215–E220.
22. Cots F, Elvira D, Castells X, Saez M. Relevance of outlier cases in case mix systems and evaluation of trimming methods. Health Care Manag Sci. 2003; 6(1):27–35.
23. Freitas A, Silva-Costa T, Lopes F, Garcia-Lema I, Teixeira-Pinto A, Brazdil P, et al. Factors influencing hospital high length of stay outliers. BMC Health Serv Res. 2012; 12:265.
Article
24. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv. 1999; 31(3):264–323.
25. Briand LC, Wieczorek I. Resource estimation in software engineering. In : Marciniak JJ, editor. Encyclopedia of software engineering. New York (NY): John Wiley & Sons Inc;2002.
26. Conte SD, Dunsmore HE, Shen VY. Software engineering metrics and models. Redwood City (CA): Benjamin/Cummings Publishing;1986.