1. Lombardo M, Lombardo G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J Cataract Refract Surg. 2010; 36:313–31.
Article
2. Artal P, Guirao A, Berrio E, Williams DR. Compensation of cor-neal aberrations by the internal optics in the human eye. J Vis. 2001; 1:1–8.
Article
3. Campbell CE. A new method for describing the aberrations of the eye using Zernike polynomials. Optom Vis Sci. 2003; 80:79–83.
Article
4. Barkana Y, Gerber Y, Elbaz U. . Central corneal thickness measurement with the Pentacam Scheimpflug system, optical low- coherence reflectometry pachymeter, and ultrasound pachymetry. J Cataract Refract Surg. 2005; 31:1729–35.
5. Lee YE, Jun RM. The intra and inter-examiner repeatability of cor-neal parameters obtained by GALILEI(TM) in normal subjects. J Korean Ophthalmol Soc. 2009; 50:1611–16.
6. Burakgazi AZ, Tinio B, Bababyan A. . Higher order aberra-tions in normal eyes measured with three different aberrometers. J Refract Surg. 2006; 22:898–903.
Article
7. Yum JH, Choi SK, Kim JH, Lee DH. Comparison of aberrations in Korean normal eyes measured with two different aberrometers. J Korean Ophthalmol Soc. 2009; 50:1789–94.
Article
8. Knapp S, Awwad ST, Ghali C, McCulley JP. Ocular aberrations measured by the Fourier-based WaveScan and Zernike-based LADARWave Hartmann-Shack aberrometers. J Refract Surg. 2009; 25:201–9.
Article
9. Shin JY, Lee MY, Chung SH. Comparison of keratometry and cor-neal higher order aberrations between Scout videokeratoscope and Pentacam Scheimpflug camera. J Korean Ophthalmol Soc. 2014; 55:1758–64.
Article
10. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychological Methods. 1996; 1:30.
Article
11. Williams D, Yoon GY, Porter J. . Visual benefit of correcting higher order aberrations of the eye. J Refract Surg. 2000; 16:S554–9.
Article
12. Artal P, Berrio E, Guirao A, Piers P. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. J Opt Soc Am A Opt Image Sci Vis. 2002; 19:137–43.
Article
13. López-Miguel A, Maldonado MJ, Belzunce A. . Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction. Am J Ophthalmol. 2012; 154:799–807.e5.
Article
14. Aramberri J, Araiz L, Garcia A. . Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg. 2012; 38:1934–49.
Article
15. Cerviño A, Dominguez-Vicent A, Ferrer-Blasco Blasco. . Intrasubject repeatability of corneal power, thickness, and wavefront aberra-tions with a new version of a dual rotating Scheimpflug-Placido system. J Cataract Refract Surg. 2015; 41:186–92.
Article
16. Wang L, Shirayama M, Koch DD. Repeatability of corneal power and wavefront aberration measurements with a dual-Scheimpflug Placido corneal topographer. J Cataract Refract Surg. 2010; 36:425–30.
Article
17. Netto MV, Ambrósio R Jr, Shen TT, Wilson SE. Wavefront analy-sis in normal refractive surgery candidates. J Refract Surg. 2005; 21:332–8.
Article
18. Yoon G, Macrae S, Williams DR, Cox IG. Causes of spherical aberration induced by laser refractive surgery. J Cataract Refract Surg. 2005; 31:127–35.
Article
19. Domínguez-Vicent A, Monsálvez-Romín D, Aguila-Carrasco Carrasco. . Measurements of anterior chamber depth, white-to-white dis-tance, anterior chamber angle, and pupil diameter using two Scheimpflug imaging devices. Arq Bras Oftalmol. 2014; 77:233–7.
Article
20. Al-Sayyari TM, Fawzy SM, Al-Saleh AA. Corneal spherical aber-ration in Saudi population. Saudi J Ophthalmol. 2014; 28:207–13.
Article