1. Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta. 2006; 369:17–28.
Article
2. Wu K, Zhang Y. Clinical application of tear proteomics: present and future prospects. Proteomics Clin Appl. 2007; 1:972–82.
Article
3. Lam SM, Tong L, Duan X. . Extensive characterization of hu-man tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014; 55:289–98.
Article
4. de Souza GA, Godoy LM, Mann M. Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol. 2006; 7:R72.
5. Soria J, Durán JA, Etxebarria J. . Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J Proteomics. 2013; 78:94–112.
Article
6. Li B, Sheng M, Li J. . Tear proteomic analysis of Sjögren syn-drome patients with dry eye syndrome by two-dimensional- nano-liquid chromatography coupled with tandem mass spectrometry. Sci Rep. 2014; 4:5772.
Article
7. Versura P, Nanni P, Bavelloni A. . Tear proteomics in evapo-rative dry eye disease. Eye (Lond). 2010; 24:1396–402.
Article
8. Chae JK, Park SP, Choi TH. Comparative analysis of the tear pro-tein expression after photorefractive keratectomy using two-di-mensional electrophoresis. J Korean Ophthalmol Soc. 2009; 50:762–8.
Article
9. Zhou L, Beuerman RW, Chan CM. . Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res. 2009; 8:4889–905.
Article
10. Labbé A, Brignole-Baudouin F, Baudouin C. Ocular surface inves-tigations in dry eye. J Fr Ophtalmol. 2007; 30:76–97.
11. Quah JH, Tong L, Barbier S. Patient acceptability of tear collection in the primary healthcare setting. Optom Vis Sci. 2014; 91:452–8.
Article
12. Posa A, Bräuer L, Schicht M. . Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat. 2013; 195:137–42.
Article
13. Esmaeelpour M, Cai J, Watts P. . Tear sample collection using cellulose acetate absorbent filters. Ophthalmic Physiol Opt. 2008; 28:577–83.
Article
14. Inic-Kanada A, Nussbaumer A, Montanaro J. . Comparison of ophthalmic sponges and extraction buffers for quantifying cyto-kine profiles in tears using Luminex technology. Mol Vis. 2012; 18:2717–25.
15. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf. 2007; 5:75–92.
16. Stuchell RN, Feldman JJ, Farris RL, Mandel ID. The effect of col-lection technique on tear composition. Invest Ophthalmol Vis Sci. 1984; 25:374–7.
17. Gachon AM, Richard J, Dastugue B. Human tears: normal protein pattern and individual protein determinations in adults. Curr Eye Res 1982-1983. 2:301–8.
Article
18. Ng V, Cho P, To C. Tear proteins of normal young Hong Kong Chinese. Graefes Arch Clin Exp Ophthalmol. 2000; 238:738–45.
Article
19. López-Cisternas J, Castillo-Díaz J, Traipe-Castro L, López-Solís RO. Use of polyurethane minisponges to collect human tear fluid. Cornea. 2006; 25:312–8.
Article
20. Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012; 31:527–50.
Article
21. Hyon SH, Cha WI, Ikada Y. . Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed. 1994; 5:397–406.
Article
22. Alves MH, Jensen BE, Smith AA, Zelikin AN. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial. Macromol Biosci. 2011; 11:1293–313.
Article
23. Bao CY, Long DR, Vergelati C. Miscibility and dynamical proper-ties of cellulose acetate/plasticizer systems. Carbohydr Polym. 2015; 116:95–102.
Article