1. Hiatt WH, Schallhorn RG. Intraoral transplants of cancellous bone and marrow in periodontal lesions. J Periodontol. 1973. 44:194–208.
Article
2. Mellonig JT. Periodontal bone graft technique. Int J Periodontics Restorative Dent. 1990. 10:288–299.
3. Hoexter DL. Bone regeneration graft materials. J Oral Implantol. 2002. 28:290–294.
Article
4. Pinholt EM, Solheim E, Bang G, Sudmann E. Bone induction by composites of bioresorbable carriers and demineralized bone in rats: a comparative study of fibrin-collagen paste, fibrin sealant, and polyorthoester with gentamicin. J Oral Maxillofac Surg. 1992. 50:1300–1304.
Article
5. Schwartz Z, Somer A, Mellonig JT, Carnes DL Jr, Dean DD, Cochran DL, Boyan BD. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation is dependent on age but not gender. J Periodontol. 1998. 69:470–478.
Article
6. Somerman MJ. Is there a role for DFDBA in periodontal regenerative therapy? J Periodontol. 1996. 67:946–948.
7. Yildirim M, Spiekermann H, Biesterfeld S, Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res. 2000. 11:217–229.
Article
8. Pinholt EM, Bang G, Haanaes HR. Alveolar ridge augmentation in rats by Bio-Oss. Scand J Dent Res. 1991. 99:154–161.
Article
9. Haas R, Mailath G, Dortbudak O, Watzek G. Bovine hydroxyapatite for maxillary sinus augmentation: Analysis of interfacial bond strength of dental implants using pull-out tests. Clin Oral Implants Res. 1998. 9:117–122.
10. Artzi Z, Nemcovsky CE, Dayan D. Bovine-HA spongiosa blocks and immediate implant placement in sinus augmentation procedures. Histopathological and histomorphometric observations on different histological stainings in 10 consecutive patients. Clin Oral Implants Res. 2002. 13:420–427.
Article
11. Carmagnola D, Berglundh T, Lindhe J. The effect of a fibrin glue on the integration of Bio-Oss with bone tissue. A experimental study in Labrador dogs. J Clin Periodontol. 2002. 29:377–383.
Article
12. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, Gunsolley JC. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol. 2003. 8:227–265.
Article
13. Carranza FA Jr, Kennedy EB, Lekovic V, Taltmante E, Valencia J, Dimitrijevic B. Histologic study of the healing of human periodontal defect after placement of porous hydroxyapatite implants. J Periodontol. 1987. 58:682–688.
Article
14. Stahl SS, Froum SJ. Histologic evaluation of human intraosseous healing response to the placement of tricalcium phosphate ceramic implant. J Periodontol. 1986. 57:211–217.
Article
15. de Bruijn JD, van Blitterswijk CA, Davies JE. Initial bone matrix formation at the hydroxyapatite interface in vivo. J Biomed Mater Res. 1995. 29:89–99.
16. Cerroni L, Filocamo R, Fabbri M, Piconi C, Caropresso S, Condo SG. Growth of osteoblast like cells on porous htdroxyapatite ceramics: an in vitro study. Biomol Eng. 2002. 19:119–124.
Article
17. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999. 20:2287–2303.
Article
18. Moskow BS, Bubarr A. Histological assessment of human periodontal defects after durapatite ceramic implants. J Periodontol. 1983. 54:455–462.
Article
19. Yukna RA, Harrison BG, Caudill RF. Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. Twelve month reentry results. J Periodontol. 1985. 56:540–547.
Article
20. Choi Jung-Yoo, Chae Gyung-Joon, Kim Chang-Sung, et al. The effects of novel biodegradable amorphorous calcium phosphate on bone regeneration in rat calvarial defects. J Korean Acad Periodontol. 2007. 37:871–879.
Article
21. Monroe EA, Votava W, Bass DB. New calcium phosphate ceramic material for bone and tooth implants. J Dent Res. 1971. 50:860–861.
Article
22. Um Yoo-Jung, Hong Ji-Yeon, Kim Sung-Tae, et al. Bone formation of newly developed biphasic calcium phosphate in rabbit calvarial defect model: pilot study. J Korean Acad Periodontol. 2008. 38:163–170.
Article
23. Lee Kwang-Ho, Jang Hyun-Seon, Park Joo-Cheol, et al. Bone formation effects of HA/β-TCP composite powder in rabbit calvarial bone defects: Histologic study. J Korean Acad Periodontol. 2006. 36:1–14.
Article
24. Fabbi M, Celotti GC, Ravaglioli A. Hydroxyapatite-based porous aggregates -physicochemical nature, structure, texture and architecture. Biomaterials. 1995. 16:225–228.
Article
25. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998. 19:133–139.
Article
26. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. Pore size of porous hydroxyapatite as the cell substatum controls BMP-induced osteogenesis. J Biochem. 1997. 121:317–324.
Article
27. Scarano A, Pecora G, Piattelli M. Osseointegration in a sinus augmented with bovine porous bone mineral: histological results in an implant retrieved 4 years after insertion. A case report. J Periodontol. 2004. 75:1161–1166.
Article
28. Zaffe D, Leghissa GC, Pradelli J, Botticelli AR. Histological study on sinus lift grafting by Fisiograft and Bio-Oss. J Mater Sci Mater Med. 2005. 16:789–793.
Article
29. Yildrim M, Spiekermann H, Handt A, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histological and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants. 2001. 16:23–33.
30. Lundgren D, Nyman S, Mathisen T, et al. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Craniomaxillofacial Surg. 1992. 20:257–260.
Article
31. Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Craniomaxillofac Surg. 2008. 36:354–359.
Article