1. Esposito PT, Cunningham CJ. A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod. 1995. 21:173–176.
Article
2. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod. 2004. 30:559–567.
Article
3. Kum KY, Spangberg LSW, Cha YB, Jung IY, Lee SJ, Lee CY. Shaping ability of three ProFile rotary instrumentation techniques in simulated resin root canals. J Endod. 2000. 26:719–723.
Article
4. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997. 23:77–85.
Article
5. Bahia MGA, Buono VTL. Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005. 100:249–255.
Article
6. Bahia MGA, Martins RC, Gonzalez BM, Buono VTL. Physical and mechanical characterization and the influence of cyclic loading on the behavior of Ni-Ti wires employed in manufacture of rotary endodontic instruments. Int Endod J. 2005. 38:795–801.
Article
7. Bahia MGA, Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickel-titanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006. 101:675–680.
Article
8. Ullmann CJ, Peters OA. Effect of cyclic fatigue on static fracture loads in ProTaper nickel-titanium rotary instruments. J Endod. 2005. 31:183–186.
Article
9. Schrader C, Peters OA. Analysis of torque and force with differently tapered rotary endodontic instruments in vitro. J Endod. 2005. 31:120–123.
Article
10. Haïkel Y, Serfaty R, Bateman G, Senger B, Alleman C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 1999. 25:434–440.
Article
11. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral radiol Endod. 2006. 102:e106–e114.
Article
12. Peters OA, Barbakow F. Dynamic torque and apical forces of ProFile 04 rotary instruments during preparation of curved canals. Int Endod J. 2002. 35:379–389.
Article
13. Zelada G, Varela P, Martin B, Bahilo JG, Magan F, Ahn S. The effect of rotational speed and the curvature of root canals on the breakage of rotary endodontic instruments. J Endod. 2002. 28:540–542.
Article
14. Xu X, Zheng Y, Eng D. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. J Endod. 2006. 32:372–375.
Article
15. Li UM, Lee BS, Shih CT, Lan WH, Lin CP. Cyclic fatigue of endodontic nickel-titanium rotary instruments: Static and dynamic tests. J Endod. 2002. 28:448–451.
Article
16. Shin YM, Kim ES, Kim KM, Kum KY. Effect of surface defects and cross-sectional configurations on the fatigue fracture of Ni-Ti rotary files in a dynamic model. J Korean Acad Conserv Dent. 2004. 29:267–272.
Article
17. Alapati SB, Brantley WA, Svec TA, Powers JM, Mitchell JC. Scanning electron microscope observations of new and used nickel-titanium rotary files. J Endod. 2003. 29:667–669.
Article
18. Kuhn G, Tavernier B, Jordan L. Influence of structure on Ni-Ti endodontic instrument failure. J Endod. 2001. 27:516–520.
19. Eggert C, Peters O, Barbacow F. Wear of nickel-titanium Lightspeed instruments by scanning electron microscopy. J Endod. 1999. 25:494–497.
Article
20. Tripi TR, Bonaccorso A, Tripi V, Condorelli GG, Rapisardo E. Defects in GT rotary instruments after use. An SEM study. J Endod. 2001. 27:782–785.
Article
21. Cheung GSP, Peng B, Bian Z, Shen Y, Darwell BW. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J. 2005. 38:802–809.
Article
22. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod. 2006. 32:55–65.
Article
23. Hull D. Fractography: Observing, measuring and interpreting fracture surface topography. 1999. Cambridge. United Kingdom: Cambridge University Press.
24. Parrington RJ. Fractography of metals and plastics. Pract Fail Anal. 2002. 2:16–46.
Article
25. Schneider SW. A comparison of canal preparations in straight and curved canals. Oral Surg. 1971. 32:271–275.
26. Fife D, Gambarini G, Britto LR. Cyclic fatigue testing of ProTaper Ni-Ti rotary instruments after clinical use. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004. 97:251–256.
Article
27. Karn TA, Kelly FC, Eichmiller FC, Spnagberg LSW. Fracture behavior of Ni-Ti rotary endodontic instruments. J Dent Res. 2004. #2684.
28. Spanaki-Voreadi AP, Kerezoudis NP, Zinelis S. Failure mechanism of ProTaper Ni-Ti rotary instruments during clinical use: fractographic analysis. Int Endod J. 2006. 39:171–178.
Article
29. Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications. Mater Sci Eng A Struct Mater. 1999. 273-275:149–160.
Article
30. Karn T. Fractographic and microstructual analysis of separated Ni-Ti rotary files. 2003. University of Connecticut;MS thesis.
31. Callister WD. Materials science and engineering. An introduction. 2000. New York: John Wiley & Sons, Inc;223–224.
32. Alapati SB, Brantley WA, Svec TA, Powers JM, Nusstein JM, Daehn GS. Proposed role of embedded dentin chips for the clinical failure of nickel-titanium rotary instruments. J Endod. 2004. 30:339–341.
Article