1. Esposito PT, Cunningham CJ. A comparison of canal preparation with nickel-titanium and stainless steel instruments. J Endod. 1995. 21:173–176.
Article
2. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod. 2004. 30:559–567.
Article
3. Kosa DA, Marshall G, Baumgartner JC. An analysis of canal centering using mechanical instrumentation techniques. J Endod. 1999. 25:441–445.
Article
4. Bahia MGA, Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickeltitanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006. 101:675–680.
Article
5. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997. 23:77–85.
Article
6. Sattapan B, Nervo GJ, Palamara JEA, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000. 26:161–165.
Article
7. Turpin YL, Chagneau F, Vulcain JM. Impact of two theoretical cross-sections on torsional and bending stresses of nickel-titanium root canal instrument models. J Endod. 2000. 26:414–417.
Article
8. Xu X, Zheng Y, Eng D. Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections. J Endod. 2006. 32:372–375.
Article
9. Berutti E, Chiandussi G, Gaviglio I, Ibba A. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile. J Endod. 2003. 29:15–19.
Article
10. Cheung GS, Darvell BW. Low-cycle fatigue of Ni-Ti rotary instruments of various cross-sectional shapes. Int Endod J. 2007. 40:626–632.
Article
11. Shin YM, Kim ES, Kim KM, Kum KY. Effect of surface defects and cross-sectional configurations on the fatigue fracture of Ni-Ti rotary files in a dynamic model. J Korean Acad Conserv Dent. 2004. 29:267–272.
Article
12. Kim JK, Kum KY, Kim ES. Comparative study on morphology of cross-section and cyclic fatigue test with different rotary Ni-Ti files and handling methods. J Korean Acad Conserv Dent. 2006. 31:96–102.
Article
13. Haikel Y, Serfaty R, Bateman G, Senger B, Alleman C. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 1999. 25:434–440.
Article
14. Li UM, Lee BS, Shih CT, Lan WH, Lin CP. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments. J Endod. 2002. 28:448–451.
15. Dederich DN, Zakariasen KL. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg Oral Med Oral Pathol. 1986. 61:192–196.
Article
16. Dieter GE. Mechanical metallurgy. 1986. 3rd ed. New York: McGraw-Hill;119138185–188. 382–387. 394
17. Schäfer E, Dzepina A, Danesh G. Bending properties of rotary nickel-titanium instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003. 96:757–763.
Article
18. Ruddle CL. Nickel-titanium rotary systems: review of existing instruments and geometries. Dent Today. 2000. 19:86–95.
19. Yao JH, Schwartz SA, Beeson TJ. Cyclic fatigue of three types of rotary nickel-titanium files in a dynamic model. J Endod. 2006. 32:55–65.
Article
20. Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral radiol Endod. 2006. 102:e106–e114.
Article
21. Hayashi Y, Yoneyama T, Yahata Y, Suda K. Phase transformation behavior and bending properties of hybrid nickel-titanium rotary endodontic instruments. Int Endod J. 2007. 40:247–253.
Article
22. Ku JH, Chang HS, Jang SW, Min KS. The instrument-centering ability of four nickel-titanium instruments in simulated curved root canals. J Korean Acad Conserv Dent. 2006. 31:113–118.
Article