Diabetes Metab J.  2015 Oct;39(5):405-413. 10.4093/dmj.2015.39.5.405.

Increased Epicardial Adipose Tissue Thickness in Type 2 Diabetes Mellitus and Obesity

Affiliations
  • 1Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea. imhys@ewha.ac.kr
  • 2Department of Radiology, Ewha Womans University School of Medicine, Seoul, Korea.

Abstract

BACKGROUND
Epicardial adipose tissue (EAT) is suggested to play an important role in the progression of metabolic syndrome. We aimed to establish a simple method to measure EAT and examine the differences in EAT thickness according to the presence of type 2 diabetes mellitus or obesity.
METHODS
A total of 94 patients (42.6% type 2 diabetes mellitus, 53.2% obese, mean age 61+/-13) who underwent multidetector computed tomography were enrolled. Thickness of EAT was measured on the parasternal short and horizontal long axis view. Epicardial fat area (EFA) was measured at the level of left main coronary artery (LMCA).
RESULTS
All EAT thicknesses were correlated with EFA at the LMCA level (r=0.235 to 0.613, all Ps<0.05), and EAT thickness in the left atrioventricular groove (LAVG) had the highest correlation coefficient (r=0.613). EFA, and EAT thicknesses in the LAVG and the left ventricular apex were higher in the group with type 2 diabetes mellitus than in the group without type 2 diabetes mellitus when adjusted only for body mass index. When adjusted only for type 2 diabetes mellitus, EFA, and EAT thicknesses in the LAVG and the right atrioventricular groove were higher in obese group than in nonobese group.
CONCLUSION
In conclusion, EAT thickness can be easily measured and represent EFA. EAT thickness, especially in LAVG, was higher in groups with type 2 diabetes mellitus and obesity independently. These findings implicate that EAT thickness may be a useful indicator for type 2 diabetes mellitus and obesity.

Keyword

Adipose tissue; Diabetes mellitus, type 2; Obesity

MeSH Terms

Adipose Tissue*
Axis, Cervical Vertebra
Body Mass Index
Coronary Vessels
Diabetes Mellitus, Type 2*
Humans
Multidetector Computed Tomography
Obesity*

Figure

  • Fig. 1 Epicardial adipose tissue was measured using multidetector computed tomography. (A) Epicardial adipose tissue thickness was measured on the parasternal short axis view. (B) Epicardial adipose tissue thickness was measured on the horizontal long axis view. (C) Epicardial fat area was measured at the left main coronary artery level. SIVG, superior interventricular groove; IIVG, inferior interventricular groove; LAVG, left atrioventricular groove; RAVG, right atrioventricular groove; AIVG, anterior interventricular groove.


Cited by  1 articles

Surgically Metabolic Resection of Pericardial Fat to Ameliorate Myocardial Mitochondrial Dysfunction in Acute Myocardial Infarction Obese Rats
Ki-Woon Kang, Ju-Young Ko, Hyunghee Lee, Seung Yong Shin, Wang Soo Lee, Joonhwa Hong, Sang-Wook Kim, Seong-Kyu Lee, Min-Ho Oak
J Korean Med Sci. 2022;37(9):e55.    doi: 10.3346/jkms.2022.37.e55.


Reference

1. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006; 444:875–880.
2. Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, Clark K, Nassef LA, Shirani J. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008; 102:767–771.
3. Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007; 8:253–261.
4. Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2010; 1801:311–319.
5. Graner M, Siren R, Nyman K, Lundbom J, Hakkarainen A, Pentikainen MO, Lauerma K, Lundbom N, Adiels M, Nieminen MS, Taskinen MR. Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J Clin Endocrinol Metab. 2013; 98:1189–1197.
6. Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011; 34:Suppl 2. S371–S379.
7. Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, Prokop M, Visseren FL. Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis. 2008; 197:896–903.
8. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005; 2:536–543.
9. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, O'Donnell CJ, Fox CS, Hoffmann U. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur Heart J. 2009; 30:850–856.
10. Katsiki N, Mikhailidis DP, Wierzbicki AS. Epicardial fat and vascular risk: a narrative review. Curr Opin Cardiol. 2013; 28:458–463.
11. Iacobellis G, Malavazos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011; 43:1651–1654.
12. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005; 365:1415–1428.
13. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr. International Diabetes Federation Task Force on Epidemiology and Prevention. Hational Heart, Lung, and Blood Institute. American Heart Association. World Heart Federation. International Atherosclerosis Society. International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120:1640–1645.
14. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006; 119:812–819.
15. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011; 22:450–457.
16. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007; 153:907–917.
17. Yorgun H, Canpolat U, Hazirolan T, Ates AH, Sunman H, Dural M, Sahiner L, Kaya EB, Aytemir K, Tokgozoglu L, Kabakci G, Oto A. Increased epicardial fat tissue is a marker of metabolic syndrome in adult patients. Int J Cardiol. 2013; 165:308–313.
18. Wang CP, Hsu HL, Hung WC, Yu TH, Chen YH, Chiu CA, Lu LF, Chung FM, Shin SJ, Lee YJ. Increased epicardial adipose tissue (EAT) volume in type 2 diabetes mellitus and association with metabolic syndrome and severity of coronary atherosclerosis. Clin Endocrinol (Oxf). 2009; 70:876–882.
19. Oyama N, Goto D, Ito YM, Ishimori N, Mimura R, Furumoto T, Kato F, Tsutsui H, Tamaki N, Terae S, Shirato H. Single-slice epicardial fat area measurement: do we need to measure the total epicardial fat volume? Jpn J Radiol. 2011; 29:104–109.
20. American Diabetes Association. Standards of medical care in diabetes: 2013. Diabetes Care. 2013; 36:Suppl 1. S11–S66.
21. Bassett J. International Diabetes Institute. World Health Organization. Regional Office for the Western Pacific. International Association for the Study of Obesity. International Obesity Task Force. The Asian-Pacific perspective: redefining obesity and its treatment. Geneva: WHO Western Pacific Region;2000.
22. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 2009; 22:1311–1319.
23. Saremi F, Mekhail S, Sefidbakht S, Thonar B, Malik S, Sarlaty T. Quantification of epicardial adipose tissue: correlation of surface area and volume measurements. Acad Radiol. 2011; 18:977–983.
24. Bambace C, Sepe A, Zoico E, Telesca M, Olioso D, Venturi S, Rossi A, Corzato F, Faccioli S, Cominacini L, Santini F, Zamboni M. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. 2014; 29:42–48.
25. Shimabukuro M. Cardiac adiposity and global cardiometabolic risk: new concept and clinical implication. Circ J. 2009; 73:27–34.
26. Karadag B, Ozulu B, Ozturk FY, Oztekin E, Sener N, Altuntas Y. Comparison of epicardial adipose tissue (EAT) thickness and anthropometric measurements in metabolic syndrome (MS) cases above and under the age of 65. Arch Gerontol Geriatr. 2011; 52:e79–e84.
27. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, Di Mario U, Leonetti F. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003; 88:5163–5168.
28. Iacobellis G, Leonetti F. Epicardial adipose tissue and insulin resistance in obese subjects. J Clin Endocrinol Metab. 2005; 90:6300–6302.
29. Iacobellis G, Barbaro G, Gerstein HC. Relationship of epicardial fat thickness and fasting glucose. Int J Cardiol. 2008; 128:424–426.
30. Utz W, Engeli S, Haufe S, Kast P, Hermsdorf M, Wiesner S, Pofahl M, Traber J, Luft FC, Boschmann M, Schulz-Menger J, Jordan J. Myocardial steatosis, cardiac remodelling and fitness in insulin-sensitive and insulin-resistant obese women. Heart. 2011; 97:1585–1589.
31. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation. 2007; 116:1170–1175.
32. Kim HM, Kim KJ, Lee HJ, Yu HT, Moon JH, Kang ES, Cha BS, Lee HC, Lee BW, Kim YJ. Epicardial adipose tissue thickness is an indicator for coronary artery stenosis in asymptomatic type 2 diabetic patients: its assessment by cardiac magnetic resonance. Cardiovasc Diabetol. 2012; 11:83.
33. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010; 72:219–246.
34. Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC, Chen WJ, Lee YT, Chen MF. Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab. 2009; 94:662–669.
35. Liang KW, Tsai IC, Lee WJ, Lee IT, Lee WL, Lin SY, Wan CJ, Fu CP, Ting CT, Sheu WH. MRI measured epicardial adipose tissue thickness at the right AV groove differentiates inflammatory status in obese men with metabolic syndrome. Obesity (Silver Spring). 2012; 20:525–532.
36. Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, Higashida M, Mikasa H, Nakaya Y, Takanashi S, Igarashi T, Kitagawa T, Sata M. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011; 58:248–255.
37. Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, Nishio C, Higashida M, Nakaya Y, Kitagawa T, Sata M. Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J. 2011; 52:139–142.
Full Text Links
  • DMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr