Chonnam Med J.  2015 Apr;51(1):33-38. 10.4068/cmj.2015.51.1.33.

Growth Hormone Responses to Provocative Tests in Children with Short Stature

Affiliations
  • 1Department of Pediatrics, Chonnam National University Medical School and Hospital, Gwangju, Korea. cjkim@jnu.ac.kr

Abstract

Growth hormone deficiency (GHD) is defined as a serum peak GH concentration <10 ng/mL with provocation as tested by a combination of at least two separate tests. The aim of this study was to compare two standard tests, insulin and levodopa (L-dopa), with a primary focus on specificity and accuracy. Clinical data were collected retrospectively from a review of 120 children who visited the pediatric endocrine clinic at Chonnam National University Hospital for the evaluation of short stature between January 2006 and April 2014. Subjects underwent GH provocation tests with insulin and L-dopa. Blood samples were obtained at 0, 15, 30, 45, 60, 90, and 120 min after administration, and GH levels were measured. In the insulin test, serial glucose levels were also checked, closely monitoring hypoglycemia. A total of 83 children (69.2%) were diagnosed with GHD and 37 children (30.8%) were diagnosed with idiopathic short stature (ISS). Peak GH levels were achieved an average of 45 min after the administration of insulin and L-dopa for both groups. The specificity and accuracy were 78.4% and 93.6% for the insulin test and 29.7% and 79.2% for L-dopa test, respectively. In the ISS group, the cumulative frequency of a GH cutoff value of >10 ng/mL at 120 min was 75.6% after insulin stimulation compared with 35.1% after L-dopa stimulation. Considering these results, we recommend performing the insulin test first to exclude ISS and then the L-dopa test for the diagnosis of GHD. This way, ISS patients are diagnosed after a single test, thus reducing hospital days and the burden of undergoing two serial tests.

Keyword

Growth hormone; Dwarfism; Child

MeSH Terms

Child*
Diagnosis
Dwarfism
Glucose
Growth Hormone*
Humans
Hypoglycemia
Insulin
Jeollanam-do
Levodopa
Retrospective Studies
Sensitivity and Specificity
Glucose
Growth Hormone
Insulin
Levodopa

Figure

  • FIG. 1 Comparison of peak GH concentrations following L-dopa (A) and insulin (B) stimulation tests between the GHD patients (n=83) and the ISS patients (n=37). Box-plots show the median, interquartile range, outliers, and extreme cases. GH: growth hormone, GHD: growth hormone deficiency, ISS: idiopathic short stature.

  • FIG. 2 Comparison of GH concentrations at each time point after L-dopa (A) and insulin (B) stimulation tests between the GHD and ISS patients. Data are presented as median and 95% confidence interval (CI). GH: growth hormone, GHD: growth hormone deficiency, ISS: idiopathic short stature.


Reference

1. Carel JC, Tresca JP, Letrait M, Chaussain JL, Lebouc Y, Job JC, et al. Growth hormone testing for the diagnosis of growth hormone deficiency in childhood: a population register-based study. J Clin Endocrinol Metab. 1997; 82:2117–2121.
Article
2. Cacciari E, Tassoni P, Cicognani A, Pirazzoli P, Salardi S, Balsamo A, et al. Value and limits of pharmacological and physiological tests to diagnose growth hormone (GH) deficiency and predict therapy response: first and second retesting during replacement therapy of patients defined as GH deficient. J Clin Endocrinol Metab. 1994; 79:1663–1669.
Article
3. Maghnie M, Strigazzi C, Tinelli C, Autelli M, Cisternino M, Loche S, et al. Growth hormone (GH) deficiency (GHD) of childhood onset: reassessment of GH status and evaluation of the predictive criteria for permanent GHD in young adults. J Clin Endocrinol Metab. 1999; 84:1324–1328.
Article
4. Rose SR, Municchi G, Barnes KM, Kamp GA, Uriarte MM, Ross JL, et al. Spontaneous growth hormone secretion increases during puberty in normal girls and boys. J Clin Endocrinol Metab. 1991; 73:428–435.
Article
5. Volta C, Bernasconi S, Iughetti L, Ghizzoni L, Rossi M, Costa M, et al. Growth hormone response to growth hormone-releasing hormone (GHRH), insulin, clonidine and arginine after GHRH pretreatment in obese children: evidence of somatostatin increase? Eur J Endocrinol. 1995; 132:716–721.
Article
6. Corneli G, Di Somma C, Baldelli R, Rovere S, Gasco V, Croce CG, et al. The cut-off limits of the GH response to GH-releasing hormone-arginine test related to body mass index. Eur J Endocrinol. 2005; 153:257–264.
Article
7. Ghigo E, Bellone J, Aimaretti G, Bellone S, Loche S, Cappa M, et al. Reliability of provocative tests to assess growth hormone secretory status. Study in 472 normally growing children. J Clin Endocrinol Metab. 1996; 81:3323–3327.
Article
8. Hanew K, Utsumi A. The role of endogenous GHRH in arginine-, insulin-, clonidine- and l-dopa-induced GH release in normal subjects. Eur J Endocrinol. 2002; 146:197–202.
Article
9. Hilczer M, Smyczynska J, Lewinski A. Limitations of clinical utility of growth hormone stimulating tests in diagnosing children with short stature. Endocr Regul. 2006; 40:69–75.
10. Martha PM Jr, Gorman KM, Blizzard RM, Rogol AD, Veldhuis JD. Endogenous growth hormone secretion and clearance rates in normal boys, as determined by deconvolution analysis: relationship to age, pubertal status, and body mass. J Clin Endocrinol Metab. 1992; 74:336–344.
Article
11. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stanford: Stanford University Press;1959.
12. Garcia-Mayor RV, Andrade MA, Rios M, Lage M, Dieguez C, Casanueva FF. Serum leptin levels in normal children: relationship to age, gender, body mass index, pituitary-gonadal hormones, and pubertal stage. J Clin Endocrinol Metab. 1997; 82:2849–2855.
Article
13. Albertsson-Wikland K, Rosberg S, Karlberg J, Groth T. Analysis of 24-hour growth hormone profiles in healthy boys and girls of normal stature: relation to puberty. J Clin Endocrinol Metab. 1994; 78:1195–1201.
Article
14. Mazzola A, Meazza C, Travaglino P, Pagani S, Frattini D, Bozzola E, et al. Unreliability of classic provocative tests for the diagnosis of growth hormone deficiency. J Endocrinol Invest. 2008; 31:159–162.
Article
15. Zadik Z, Chalew SA, Gilula Z, Kowarski AA. Reproducibility of growth hormone testing procedures: a comparison between 24-hour integrated concentration and pharmacological stimulation. J Clin Endocrinol Metab. 1990; 71:1127–1130.
Article
16. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society. J Clin Endocrinol Metab. 2000; 85:3990–3993.
17. Song AK, Kim HJ, Suk HJ, Hwang JS, Hong CH. Serum IGF-I and IGFBP-3 in 919 healthy Korean children and adolescents: normal values and correlations with age, sex, height, body mass index and bone age. J Korean Soc Pediatr Endocrinol. 2005; 10:35–41.
18. Maghnie M, Valtorta A, Moretta A, Larizza D, Preti P, Palladini G, et al. Diagnosing growth hormone deficiency: the value of shortterm hypocaloric diet. J Clin Endocrinol Metab. 1993; 77:1372–1378.
Article
19. Loche S, Guzzetti C, Pilia S, Ibba A, Civolani P, Porcu M, et al. Effect of body mass index on the growth hormone response to clonidine stimulation testing in children with short stature. Clin Endocrinol (Oxf). 2011; 74:726–731.
Article
20. Lee HS, Hwang JS. Influence of body mass index on growth hormone responses to classic provocative tests in children with short stature. Neuroendocrinology. 2011; 93:259–264.
Article
21. Lee J, Yoon J, Kang MJ, Lee YA, Lee SY, Shin CH, et al. Influence of body mass index on the growth hormone response to provocative testing in short children without growth hormone deficiency. J Korean Med Sci. 2013; 28:1351–1355.
Article
22. Stanley TL, Levitsky LL, Grinspoon SK, Misra M. Effect of body mass index on peak growth hormone response to provocative testing in children with short stature. J Clin Endocrinol Metab. 2009; 94:4875–4881.
Article
23. Loche S, Guzzetti C, Pilia S, Ibba A, Civolani P, Porcu M, et al. Effect of body mass index on the growth hormone response to clonidine stimulation testing in children with short stature. Clin Endocrinol (Oxf). 2011; 74:726–731.
Article
24. Qu XD, Gaw Gonzalo IT, Al Sayed MY, Cohan P, Christenson PD, Swerdloff RS, et al. Influence of body mass index and gender on growth hormone (GH) responses to GH-releasing hormone plus arginine and insulin tolerance tests. J Clin Endocrinol Metab. 2005; 90:1563–1569.
Article
25. Colao A, Di Somma C, Savastano S, Rota F, Savanelli MC, Aimaretti G, et al. A reappraisal of diagnosing GH deficiency in adults: role of gender, age, waist circumference, and body mass index. J Clin Endocrinol Metab. 2009; 94:4414–4422.
Article
26. Moon JS, Lee SY, Nam CM, Choi JM, Choe BK, Seo JW, et al. 2007 Korean National Growth Charts: review of developmental process and an outlook. Korean J Pediatr. 2008; 51:1–25.
Article
27. Biller BM, Samuels MH, Zagar A, Cook DM, Arafah BM, Bonert V, et al. Sensitivity and specificity of six tests for the diagnosis of adult GH deficiency. J Clin Endocrinol Metab. 2002; 87:2067–2079.
Article
28. Shalet SM, Toogood A, Rahim A, Brennan BM. The diagnosis of growth hormone deficiency in children and adults. Endocr Rev. 1998; 19:203–223.
Article
Full Text Links
  • CMJ
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr