Endocrinol Metab.  2011 Mar;26(1):25-32. 10.3803/EnM.2011.26.1.25.

Molecular Understanding and Assessment of Hypoparathyroidism

Affiliations
  • 1Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon, Korea. shleemd@gachon.ac.kr

Abstract

No abstract available.


MeSH Terms

Hypoparathyroidism

Figure

  • Fig. 1. Calcium Homeostasis. In response to declines in serum calcium, the parathyroid glands secrete parathyroid hormone (PTH). PTH stimulates the release of Ca2+ from bone, increasing bone resorption. In the kidney, PTH stimulates tubular reabsorption of Ca2+ and synthesis of calcitriol (1, 25[OH]2D3, the biologically active form of vitamin D) in the kidney. The main physiological function of calcitriol is to increase intestinal Ca2+ absorption. Therefore, all effects of PTH act to directly or indirectly increase the calcium concentration in the extracellular fluids.

  • Fig. 2. Primary sequence of human PTH and organization of its domain. The pre (signal sequence), pro (black box), and mature regions (boxed) of PTH are labeled. The arrowheads point toward the Cys residue (C18) that is replaced by Arg (R) and Ser residue (S23) that is replaced by Pro (P).

  • Fig. 3. The structure of the CaSR. A model of the dimeric form of the extracellular calcium-sensing receptor (CaSR), with each of the two individual receptor molecules of the dimer pair shown in red and blue. The bi-lobed, venus-flytrap domain of the CaR is modeled on the known crystal structure of the metabotropic glutamate receptor type 1. The approximate locations of the five putative protein kinase C phosphorylation sites are indicated by yellow triangles. The grey circles indicate individual cysteine residues that comprise the cysteine-rich domain (From Hofer et al. Nat Rev Molec Cell Biol 4:530–538, 2003[25]).

  • Fig. 4. Extracellular calcium sensing and signaling. Numerous agonists converge on the extracellular calcium-sensing receptor (CaSR) to activate a complex network of intracellular signal-transduction cascades. Please refer to the text for further details. AA, arachidonic acid; AC, adenylate cyclase; cAMP, cyclic AMP; cPLA2, cytosolic phospholipase A2; DAG, diacylglycerol; ERK, extracellular-sig-nal-regulated kinase; G i and G q, subunits of the i- and q-type heterotrimeric G proteins, respectively; Ins(1,4,5)P3, inositol-1,4,5-trisphosphate; Ins(1,4,5)P3 R, inositol-1,4,5-trisphosphate receptor; JNK, Jun amino-terminal kinase; MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; PI4K, phosphatidylinosi-tol 4-kinase; PKC, protein kinase C; PLC, phospholipase C; PtdIns(4,5)P2, phosha-tidylinositol-4,5-bisphosphate (From Hofer et al. Nat Rev Molec Cell Biol4:530–538, 2003[25]).

  • Fig. 5. GCMB gene structure and previously reported mutations.


Reference

References

1. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 81:239–297. 2001.
Article
2. Thakker RV. Genetic developments in hypoparathyroidism. Lancet. 357:974–976. 2001.
Article
3. Cooper MS, Gittoes NJ. Diagnosis and management of hypocalcaemia. BMJ. 336:1298–1302. 2008.
Article
4. Carpenter TO, Carnes DL Jr, Anast CS. Hypoparathyroidism in Wilson's disease. N Engl J Med. 309:873–877. 1983.
Article
5. de Seze S, Solnica J, Mitrovic D, Miravet L, Dorfmann H. Joint and bone disorders and hypoparathyroidism in hemochromatosis. Semin Arthritis Rheum. 2:71–94. 1972.
6. Winslow CP, Meyers AD. Hypocalcemia as a complication of radioiodine therapy. Am J Otolaryngol. 19:401–403. 1998.
Article
7. Nakamura Y, Matsumoto T, Tamakoshi A, Kawamura T, Seino Y, Kasuga M, Yanagawa H, Ohno Y. Prevalence of idiopathic hypoparathyroidism and pseudohypoparathyroidism in Japan. J Epidemiol. 10:29–33. 2000.
Article
8. Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet. 370:1443–1452. 2007.
Article
9. Asari R, Passler C, Kaczirek K, Scheuba C, Niederle B. Hypoparathyroidism after total thyroidectomy: a prospective study. Arch Surg. 143:132–137. discussion 138. 2008.
10. Thomusch O, Machens A, Sekulla C, Ukkat J, Brauckhoff M, Dralle H. The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: a multivariate analysis of 5846 consecutive patients. Surgery. 133:180–185. 2003.
Article
11. Zarnegar R, Brunaud L, Clark OH. Prevention, evaluation, and management of complications following thyroidectomy for thyroid carcinoma. Endocrinol Metab Clin North Am. 32:483–502. 2003.
Article
12. Burch WM, Posillico JT. Hypoparathyroidism after I-131 therapy with subsequent return of parathyroid function. J Clin Endocrinol Metab. 57:398–401. 1983.
Article
13. Gertner JM, Broadus AE, Anast CS, Grey M, Pearson H, Genel M. Impaired parathyroid response to induced hypocalcemia in thalassemia major. J Pediatr. 95:210–213. 1979.
Article
14. Wilson DI, Burn J, Scambler P, Goodship J. DiGeorge syndrome: part of CATCH 22. J Med Genet. 30:852–856. 1993.
Article
15. Habener JF, Rosenblatt M, Potts JT Jr. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol Rev. 64:985–1053. 1984.
Article
16. Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest. 86:1084–1087. 1990.
Article
17. Parkinson DB, Thakker RV. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet. 1:149–152. 1992.
Article
18. Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S. A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab. 84:3792–3796. 1999.
Article
19. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 366:575–580. 1993.
Article
20. Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC. Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol. 274:F611–622. 1998.
21. Freichel M, Zink-Lorenz A, Holloschi A, Hafner M, Flockerzi V, Raue F. Expression of a calcium-sensing receptor in a human medullary thyroid carcinoma cell line and its contribution to calcitonin secretion. Endocrinology. 137:3842–3848. 1996.
Article
22. Garrett JE, Capuano IV, Hammerland LG, Hung BC, Brown EM, Hebert SC, Nemeth EF, Fuller F. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 270:1291912925. 1995.
Article
23. Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature. 407:971977. 2000.
Article
24. Hu J, Hauache O, Spiegel AM. Human Ca2 + receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors. J Biol Chem. 275:16382–16389. 2000.
25. Hofer AM, Brown EM. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol. 4:530–538. 2003.
Article
26. Clapham DE. Calcium signaling. Cell. 131:1047–1058. 2007.
Article
27. Handlogten ME, Huang C, Shiraishi N, Awata H, Miller RT. The Ca2+-sensing receptor activates cytosolic phospholipase A2 via a Gqalpha-dependent ERK-independent pathway. J Biol Chem. 276:13941–13948. 2001.
28. Huang C, Handlogten ME, Miller RT. Parallel activation of phosphatidy-linositol 4-kinase and phospholipase C by the extracellular calcium-sensing receptor. J Biol Chem. 277:20293–20300. 2002.
Article
29. de Jesus Ferreira MC, Helies-Toussaint C, Imbert-Teboul M, Bailly C, Verbavatz JM, Bellanger AC, Chabardes D. Coexpression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone-dependent cAMP accumulation by extracellular Ca2+. J Biol Chem. 273:15192–15202. 1998.
30. Motoyama HI, Friedman PA. Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. Am J Physiol Renal Physiol. 283:F399–406. 2002.
31. Kifor O, MacLeod RJ, Diaz R, Bai M, Yamaguchi T, Yao T, Kifor I, Brown EM. Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. Am J Physiol Renal Physiol. 280:F291–302. 2001.
Article
32. Corbetta S, Lania A, Filopanti M, Vicentini L, Ballare E, Spada A. Mitogen-activated protein kinase cascade in human normal and tumoral parathyroid cells. J Clin Endocrinol Metab. 87:2201–2205. 2002.
Article
33. Arthur JM, Lawrence MS, Payne CR, Rane MJ, McLeish KR. The calcium-sensing receptor stimulates JNK in MDCK cells. Biochem Biophys Res Commun. 275:538–541. 2000.
Article
34. Carrillo-Lopez N, Alvarez-Hernandez D, Gonzalez-Suarez I, Roman-Garcia P, Valdivielso JM, Fernandez-Martin JL, Cannata-Andia JB. Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrol Dial Transplant. 23:3479–3484. 2008.
Article
35. Ritter CS, Pande S, Krits I, Slatopolsky E, Brown AJ. Destabilization of parathyroid hormone mRNA by extracellular Ca2 + and the calcimimetic R-568 in parathyroid cells: role of cytosolic Ca and requirement for gene transcription. J Mol Endocrinol. 40:13–21. 2008.
36. Heath H 3rd, Odelberg S, Jackson CE, Teh BT, Hayward N, Larsson C, Buist NR, Krapcho KJ, Hung BC, Capuano IV, Garrett JE, Leppert MF. Clustered inactivating mutations and benign polymorphisms of the calcium receptor gene in familial benign hypocalciuric hypercalcemia suggest receptor functional domains. J Clin Endocrinol Metab. 81:1312–1317. 1996.
Article
37. Hirai H, Nakajima S, Miyauchi A, Nishimura K, Shimizu N, Shima M, Michigami T, Ozono K, Okada S. A novel activating mutation (C129S) in the calcium-sensing receptor gene in a Japanese family with autosomal dominant hypocalcemia. J Hum Genet. 46:41–44. 2001.
Article
38. Pearce SH, Trump D, Wooding C, Besser GM, Chew SL, Grant DB, Heath DA, Hughes IA, Paterson CR, Whyte MP, Thakker RV. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 96:2683–2692. 1995.
Article
39. Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 75:1297–1303. 1993.
Article
40. Hendy GN, Guarnieri V, Canaff L. Chapter 3 calcium-sensing receptor and associated diseases. Prog Mol Biol Transl Sci. 89:31–95. 2009.
Article
41. Moe SM, Cunningham J, Bommer J, Adler S, Rosansky SJ, Urena-Torres P, Albizem MB, Guo MD, Zani VJ, Goodman WG, Sprague SM. Longterm treatment of secondary hyperparathyroidism with the calcimimetic cinacalcet HCl. Nephrol Dial Transplant. 20:2186–2193. 2005.
Article
42. Jones BW, Fetter RD, Tear G, Goodman CS. Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell. 82:1013–1023. 1995.
Article
43. Hosoya T, Takizawa K, Nitta K, Hotta Y. Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell. 82:10251036. 1995.
Article
44. Kim J, Jones BW, Zock C, Chen Z, Wang H, Goodman CS, Anderson DJ. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci U S A. 95:12364–12369. 1998.
Article
45. Kanemura Y, Hiraga S, Arita N, Ohnishi T, Izumoto S, Mori K, Matsumura H, Yamasaki M, Fushiki S, Yoshimine T. Isolation and expression analysis of a novel human homologue of the Drosophila glial cells missing (gcm) gene. FEBS Lett. 442:151–156. 1999.
46. Gunther T, Chen ZF, Kim J, Priemel M, Rueger JM, Amling M, Moseley JM, Martin TJ, Anderson DJ, Karsenty G. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature. 406:199203. 2000.
Article
47. Akiyama Y, Hosoya T, Poole AM, Hotta Y. The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci U S A. 93:14912–14916. 1996.
Article
48. Wegner M, Riethmacher D. Chronicles of a switch hunt: gcm genes in development. Trends Genet. 17:286–290. 2001.
Article
49. Schreiber J, Enderich J, Wegner M. Structural requirements for DNA binding of GCM proteins. Nucleic Acids Res. 26:2337–2343. 1998.
Article
50. Schreiber J, Sock E, Wegner M. The regulator of early gliogenesis glial cells missing is a transcription factor with a novel type of DNA-binding domain. Proc Natl Acad Sci U S A. 94:4739–4744. 1997.
Article
51. Baumber L, Tufarelli C, Patel S, King P, Johnson CA, Maher ER, Trembath RC. Identification of a novel mutation disrupting the DNA binding activity of GCM2 in autosomal recessive familial isolated hypoparathyroidism. J Med Genet. 42:443–448. 2005.
Article
52. Thomee C, Schubert SW, Parma J, Le PQ, Hashemolhosseini S, Wegner M, Abramowicz MJ. GCMB mutation in familial isolated hypoparathyroidism with residual secretion of parathyroid hormone. J Clin Endocrinol Metab. 90:2487–2492. 2005.
53. Mannstadt M, Bertrand G, Muresan M, Weryha G, Leheup B, Pulusani SR, Grandchamp B, Juppner H, Silve C. Dominant-negative GCMB mutations cause an autosomal dominant form of hypoparathyroidism. J Clin Endocrinol Metab. 93:3568–3576. 2008.
54. Mirczuk SM, Bowl MR, Nesbit MA, Cranston T, Fratter C, Allgrove J, Brain C, Thakker RV. A missense glial cells missing homolog B (GCMB) mutation, Asn502His, causes autosomal dominant hypoparathyroidism. J Clin Endocrinol Metab. 95:3512–3516. 2010.
55. Lee S, Yi H-S, Eom Y, Lee S, Hong S, Jueppner H, Mannstadt M. Identification and characterization of a novel C106R mutation in the DNA binding domain of the GCMB gene in a family with autosoma dominant hypoparathyroidism. J Bone Miner Res. 25(Suppl 1):S492. 2010.
56. Canaff L, Zhou X, Mosesova I, Cole DE, Hendy GN. Glial cells missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat. 30:85–92. 2009.
Article
57. Kawahara M, Iwasaki Y, Sakaguchi K, Taguchi T, Nishiyama M, Nigawara T, Kambayashi M, Sawada T, Jing X, Miyajima M, Terada Y, Hashimoto K, Suda T. Involvement of GCMB in the transcriptional regulation of the human parathyroid hormone gene in a parathyroid-derived cell line PT-r: effects of calcium and 1,25(OH)2D3. Bone. 47:534–541. 2010.
58. Grigorieva IV, Mirczuk S, Gaynor KU, Nesbit MA, Grigorieva EF, Wei Q, Ali A, Fairclough RJ, Stacey JM, Stechman MJ, Mihai R, Kurek D, Fraser WD, Hough T, Condie BG, Manley N, Grosveld F, Thakker RV. Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J Clin Invest. 120:21442155. 2010.
Article
59. Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K. GATA3 haplo-insufficiency causes human HDR syndrome. Nature. 406:419–422. 2000.
Article
60. Bilous RW, Murty G, Parkinson DB, Thakker RV, Coulthard MG, Burn J, Mathias D, Kendall-Taylor P. Brief report: autosomal dominant familial hypoparathyroidism, sensorineural deafness, and renal dysplasia. N Engl J Med. 327:1069–1074. 1992.
61. Hasegawa T, Hasegawa Y, Aso T, Koto S, Nagai T, Tsuchiya Y, Kim KC, Ohashi H, Wakui K, Fukushima Y. HDR syndrome (hypoparathyroidism, sensorineural deafness, renal dysplasia) associated with del(10)(p13). Am J Med Genet. 73:416–418. 1997.
Article
62. George KM, Leonard MW, Roth ME, Lieuw KH, Kioussis D, Grosveld F, Engel JD. Embryonic expression and cloning of the murine GATA-3 gene. Development. 120:2673–2686. 1994.
Article
63. Nesbit MA, Bowl MR, Harding B, Ali A, Ayala A, Crowe C, Dobbie A, Hampson G, Holdaway I, Levine MA, McWilliams R, Rigden S, Sampson J, Williams AJ, Thakker RV. Characterization of GATA3 mutations in the hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. J Biol Chem. 279:22624–22634. 2004.
Article
64. Adachi M, Tachibana K, Asakura Y, Tsuchiya T. A novel mutation in the GATA3 gene in a family with HDR syndrome (Hypoparathyroidism, sensorineural Deafness and Renal anomaly syndrome). J Pediatr Endocrinol Metab. 19:87–92. 2006.
Article
65. Chiu WY, Chen HW, Chao HW, Yann LT, Tsai KS. Identification of three novel mutations in the GATA3 gene responsible for familial hypoparathyroidism and deafness in the Chinese population. J Clin Endocrinol Metab. 91:4587–4592. 2006.
66. Mino Y, Kuwahara T, Mannami T, Shioji K, Ono K, Iwai N. Identification of a novel insertion mutation in GATA3 with HDR syndrome. Clin Exp Nephrol. 9:58–61. 2005.
Article
67. Muroya K, Hasegawa T, Ito Y, Nagai T, Isotani H, Iwata Y, Yamamoto K, Fujimoto S, Seishu S, Fukushima Y, Hasegawa Y, Ogata T. GATA3 abnormalities and the phenotypic spectrum of HDR syndrome. J Med Genet. 38:374–380. 2001.
Article
68. Zahirieh A, Nesbit MA, Ali A, Wang K, He N, Stangou M, Bamichas G, Sombolos K, Thakker RV, Pei Y. Functional analysis of a novel GATA3 mutation in a family with the hypoparathyroidism, deafness, and renal dysplasia syndrome. J Clin Endocrinol Metab. 90:2445–2450. 2005.
Article
69. Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Clin Endocrinol Metab. 91:2843–2850. 2006.
Article
70. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, Krohn KJ, Lalioti MD, Mullis PE, Antonarakis SE, Kawasaki K, Asakawa S, Ito F, Shimizu N. Positional cloning of the APECED gene. Nat Genet. 17:393–398. 1997.
Article
71. Gibson TJ, Ramu C, Gemund C, Aasland R. The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem Sci. 23:242–244. 1998.
Article
72. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D. Projection of an immunological self shadow within the thymus by the aire protein. Science. 298:1395–1401. 2002.
Article
73. Betterle C, Greggio NA, Volpato M. Clinical review 93: Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 83:1049–1055. 1998.
74. Husebye ES, Perheentupa J, Rautemaa R, Kampe O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Intern Med. 265:514–529. 2009.
Article
75. Alimohammadi M, Bjorklund P, Hallgren A, Pontynen N, Szinnai G, Shikama N, Keller MP, Ekwall O, Kinkel SA, Husebye ES, Gustafsson J, Rorsman F, Peltonen L, Betterle C, Perheentupa J, Akerstrom G, Westin G, Scott HS, Hollander GA, Kampe O. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med. 358:10181028. 2008.
Article
76. Brandi ML, Aurbach GD, Fattorossi A, Quarto R, Marx SJ, Fitzpatrick LA. Antibodies cytotoxic to bovine parathyroid cells in autoimmune hypoparathyroidism. Proc Natl Acad Sci U S A. 83:8366–8369. 1986.
Article
77. Kemp EH, Gavalas NG, Krohn KJ, Brown EM, Watson PF, Weetman AP. Activating autoantibodies against the calcium-sensing receptor detected in two patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab. 94:4749–4756. 2009.
Article
78. Lee S, Hong SW, Choi HS, Lee LY, Nam C, Rhee Y, Chung UI, Lim SK. Experimental parathyroid hormone gene therapy using OC31 integrase. Endocr J. 55:1033–1041. 2008.
Article
79. Chou FF, Huang SC, Chang SF, Liaw J, Hung PH. Oral gene therapy for hypoparathyroidism: a rat model. Hum Gene Ther. 20:1344–1350. 2009.
Article
80. Shoback D. Clinical practice. Hypoparathyroidism. N Engl J Med. 359:391403. 2008.
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr