Endocrinol Metab.  2010 Jun;25(2):89-93. 10.3803/EnM.2010.25.2.89.

Microchimerism and Autoimmune Thyroid Disease

Affiliations
  • 1Department of Medicine, Cheil General Hospital, Kwandong University School of Medicine, Seoul, Korea.

Abstract

No abstract available.


MeSH Terms

Chimerism
Thyroid Diseases
Thyroid Gland

Reference

References

1. Liégeois A, Escourrou J, Ouvré E, Charreire J. Microchimerism: a stable state of low-ratio proliferation of allogeneic bone marrow. Transplant Proc. 9:273–276. 1977.
2. Brix TH, Hansen PS, Kyvik KO, Hegedüs L. Aggregation of thyroid autoantibodies in twins from opposite-sex pairs suggests that microchimerism may play a role in the early stages of thyroid autoimmunity. J Clin Endocrinol Metab. 94:4439–4443. 2009.
Article
3. Rust DW, Bianchi DW. Microchimerism in endocrine pathology. Endocr Pathol. 20:11–16. 2009.
Article
4. Sarkar K, Miller FW. Possible roles and determinants of microchimerism in autoimmune and other disorders. Autoimmun Rev. 3:454–463. 2004.
Article
5. Ando T, Davies TF. Self-recognition and the role of fetal microchimerism. Best Pract Res Clin Endocrinol Metab. 18:197–211. 2004.
Article
6. Ando T, Davies TF. Clinical Revise 160: Postpartum autoimmune thyroid disease: the potential role of fetal microchimerism. J Clin Endocrinol Metab. 88:2965–2971. 2003.
7. Bianchi DW. Robert E. Gross Lecture. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg. 42:12–18. 2007.
8. Ando T, Imaizumi M, Graves PN, Unger P, Davies TF. Intrathyroidal fetal microchimerism in Graves' disease. J Clin Endocrinol Metab. 87:3315–3320. 2002.
Article
9. Klintschar M, Schwaiger P, Mannweiler S, Regauer S, Kleiber M. Evidence of fetal microchimerism in Hashimoto's thyroiditis. J Clin Endocrinol Metab. 86:2494–2498. 2001.
Article
10. Srivatsa B, Srivatsa S, Johnson KL, Samura O, Lee SL, Bianchi DW. Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet. 358:2034–2038. 2001.
Article
11. Oosterwijk JC, Mesker WE, Ouwerkerk-van Velzen MC, Knepflé CF, Wiesmeijer KC, Beverstock GC, van Ommen GJ, Kanhai HH, Tanke HJ. Fetal cell detection in maternal blood: a study of 236 samples using erythroblast morphology, DAB and HbF staining, and FISH analysis. Cytometry. 32:178–185. 1998.
12. Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP. PCR quantification of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet. 61:822–829. 1997.
13. Gänshirt-Ahlert D, Burschyk M, Garritsen HS, Helmer L, Miny P, Horst J, Schneider HP, Holzgreve W. Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am J Obstet Gynecol. 166:1350–1355. 1992.
Article
14. Imaizumi M, Pritsker A, Unger P, Davies TF. Intrathyroidal fetal microchimerism in pregnancy and postpartum. Endocrinology. 143:247–253. 2002.
Article
15. Nelson JL. Microchimerism in human health and disease. Autoimmunity. 36:5–9. 2003.
Article
16. Johnson KL, Dukes KA, Vidaver J, LeShane ES, Ramirez I, Weber WD, Bischoff FZ, Hahn S, Sharma A, Dang DX, Hire LM, Bianchi DW, Simpson JL, Holzgreve W, Elias S, Klinger KW. Interlaboratory comparison of fetal male DNA detection from common maternal plasma samples by realtime PCR. Clin Chem. 50:516–521. 2004.
Article
17. Thomas MR, Williamson R, Craft I, Yazdani N, Rodeck CH. Y chromosome sequence DNA amplified from peripheral blood of women in early pregnancy. Lancet. 343:413–414. 1994.
Article
18. Davies TF. The thyroid immunology of the postpartum period. Thyroid. 9:675–684. 1999.
Article
19. Ariga H, Ohto H, Busch MP, Imamura S, Watson R, Reed W, Lee TH. Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion. 41:1524–1530. 2001.
Article
20. Steele CD, Wapner RJ, Smith JB, Haynes MK, Jackson LG. Prenatal diagnosis using fetal cells isolated from maternal peripheral blood: a review. Clin Obstet Gynecol. 39:801–813. 1996.
Article
21. Bianchi DW, Farina A, Weber W, Delli-Bovi LC, Deriso M, Williams JM, Klinger KW. Significant fetal-maternal hemorrhage after termination of pregnancy: implications for development of fetal cell microchimerism. Am J Obstet Gynecol. 184:703–706. 2001.
Article
22. Aractingi S, Berkane N, Bertheau P, Le Goué C, Dausset J, Uzan S, Carosella ED. Fetal DNA in skin of polymorphic eruptions of pregnancy Lancet. 352:1898–1901. 1998.
23. Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 93:705–708. 1996.
Article
24. Johnson KL, Samura O, Nelson JL, McDonnell M d WM, Bianchi DW. Significant fetal cell microchimerism in a nontransfused woman with hepatitis C: evidence of longterm survival and expansion. Hepatology. 36:1295–1297. 2002.
Article
25. Lambert NC, Lo YM, Erickson TD, Tylee TS, Guthrie KA, Furst DE, Nelson JL. Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood. 100:2845–2851. 2002.
Article
26. Khosrotehrani K, Bianchi DW. Multilineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 118:1559–1563. 2005.
Article
27. Bianchi DW. Fetal cells in the maternal circulation: feasibility for prenatal diagnosis. Br J Haematol. 105:574–583. 1999.
Article
28. Osada H, Doi S, Fukushima T, Nakauchi H, Seki K, Sekiya S. Detection of fetal HPCs in maternal circulation after delivery. Transfusion. 41:499503. 2001.
Article
29. Guetta E, Gordon D, Simchen MJ, Goldman B, Barkai G. Hematopoietic progenitor cells as targets for noninvasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol Dis. 30:13–21. 2003.
30. Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, Nelson JL. Longterm fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood. 93:2033–2037. 1999.
Article
31. van Wijk IJ, van Vugt JM, Mulders MA, Könst AA, Weima SM, Oudejans CB. Enrichment of fetal trophoblast cells from the maternal peripheral blood followed by detection of fetal deoxyribonucleic acid with a nested X/Y polymerase chain reaction. Am J Obstet Gynecol. 174:871–878. 1996.
Article
32. O'Donoghue K, Choolani M, Chan J, de la Fuente J, Kumar S, Campagnoli C, Bennett PR, Roberts IA, Fisk NM. Identification of fetal mesenchymal stem cells in maternal blood: implications for noninvasive prenatal diagnosis. Mol Hum Reprod. 9:497–502. 2003.
33. Khosrotehrani K, Johnson KL, Cha DH, Salomon RN, Bianchi DW. Transfer of fetal cells with multilineage potential to maternal tissue. JAMA. 292:75–80. 2004.
Article
34. Imaizumi M, Pritsker A, Kita M, Ahmad L, Unger P, Davies T. Pregnancy and murine thyroiditis: thyroglobulin immunization leads to fetal loss in specific allogeneic pregnancies. Endocrinology. 142:823–829. 2001.
35. Jansson R, Dahlberg PA, Winsa B, Meirik O, Säfwenberg J, Karlsson A. The postpartum period constitutes an important risk for the development of clinical Graves' disease in young women. Acta Endocrinol (Copenh). 116:321–325. 1987.
Article
36. Nelson JL, Furst DE, Maloney S, Gooley T, Evans PC, Smith A, Bean MA, Ober C, Bianchi DW. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 351:559–562. 1998.
Article
37. Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med. 338:1186–1191. 1998.
Article
38. Lambert N, Nelson JL. Microchimerism in autoimmune disease: more questions than answers? Autoimmun Rev. 2:133–139. 2003.
Article
39. Lambert NC, Evans PC, Hashizumi TL, Maloney S, Gooley T, Furst DE, Nelson JL. Cutting edge: persistent fetal microchimerism in T lymphocytes is associated with HLA-DQA1*0501: implications in autoimmunity. J Immunol. 164:5545–5548. 2000.
Article
40. Renné C, Ramos Lopez E, Steimle-Grauer SA, Ziolkowski P, Pani MA, Luther C, Holzer K, Encke A, Wahl RA, Bechstein WO, Usadel KH, Hansmann ML, Badenhoop K. Thyroid fetal male microchimerisms in mothers with thyroid disorders: presence of Y-chromosomal immunofluorescence in thyroid-infiltrating lymphocytes is more prevalent in Hashimoto's thyroiditis and Graves' disease than in follicular adenomas. J Clin Endocrinol Metab. 89:5810–5814. 2004.
41. Klintschar M, Immel UD, Kehlen A, Schwaiger P, Mustafa T, Mannweiler S, Regauer S, Kleiber M, Hoang-Vu C. Fetal microchimerism in Hashimoto's thyroiditis: a quantitative approach. Eur J Endocrinol. 154:237241. 2006.
Article
42. Cirello V, Recalcati MP, Muzza M, Rossi S, Perrino M, Vicentini L, Beck-Peccoz P, Finelli P, Fugazzola L. Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Res. 68:8482–8488. 2008.
Article
43. Johnson KL, Bianchi DW. Fetal cells in maternal tissue following pregnancy: what are the consequences? Hum Reprod Update. 10:497–502. 2004.
Article
44. Walsh JP, Bremner AP, Bulsara MK, O'Leary P, Leedman PJ, Feddema P, Michelangeli V. Parity and the risk of autoimmune thyroid disease: a community-based study. J Clin Endocrinol Metab. 90:5309–5312. 2005.
Article
45. Adams Waldorf KM, Nelson JL. Autoimmune disease during pregnancy and the microchimerism legacy of pregnancy. Immunol Invest. 37:631644. 2008.
Article
46. Friedrich N, Schwarz S, Thonack J, John U, Wallaschofski H, Völzke H. Association between parity and autoimmune thyroiditis in a general female population. Autoimmunity. 41:174–180. 2008.
Article
Full Text Links
  • ENM
Actions
Cited
CITED
export Copy
Close
Share
  • Twitter
  • Facebook
Similar articles
Copyright © 2024 by Korean Association of Medical Journal Editors. All rights reserved.     E-mail: koreamed@kamje.or.kr