1. Walsh C, Meade J, McGill K, Fanning S. The biodiversity of thermoduric bacteria isolated from whey. J Food Saf. 2012. 32:255–261.
Article
2. Banykó J, Vyletelová M. Determining the source of
Bacillus cereus and
Bacillus licheniformis isolated from raw milk, pasteurised milk and yoghurt. Lett Appl Microbiol. 2009. 48:318–323.
Article
3. Bott TL, Brock TD. Bacterial growth rates above 90 degrees C in Yellowstone hot springs. Science. 1969. 164:1411–1412.
Article
4. Brock TD, Freeze H.
Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969. 98:289–297.
Article
5. Brock TD, Boylen LK. Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol. 1973. 25:72–76.
Article
6. Pask-Hughes R, Williama RA. Extremely thermophilic gram-negative bacteria from hot tap water. J Gen Microbiol. 1975. 88:321–328.
Article
7. Oshima T, Imahori K. Description of
Thermus thermophiles (Yoshida and Oshima) comb. Nov. A non-sporulating thermophilic bacterium from a Japanese thermal spa. Intern System Bacteriol. 1974. 24:102–112.
Article
8. Ward J, Cockson A. Studies on a thermophilic bacillus: its isolation, properties, and temperature coefficient of growth. J Bacteriol. 1972. 112:1040–1042.
Article
9. Metzger WJ, Patterson R, Fink J, Semerdjian R, Roberts M. Sauna-takers disease. Hypersensitivity pneumonitis due to contaminated water in a home sauna. JAMA. 1976. 236:2209–2211.
Article
10. Scheldeman P, Pil A, Herman L, De Vos P, Heyndrickx M. Incidence and diversity of potentially highly heat-resistant spores isolated at dairy farms. Appl Environ Microbiol. 2005. 71:1480–1494.
Article
11. Finley N, Fields ML. Heat activation and heat-induced dormancy of
Bacillus stearothermophilus spores. Appl Microbiol. 1962. 10:231–236.
Article
12. Hill WM, Fields ML. Factors affecting growth and interaction of rough and smooth variants of
Bacillus stearothermophilus. I. Oxygen tension and temperature. J Food Sci. 1967. 32:458–462.
Article
13. O'Brien RT, Campbell LL Jr. The nutritional requirements for germination and outgrowth of spores and vegetative cell growth of some aerobic spore forming bacteria. J Bacteriol. 1957. 73:522–525.
14. Martin PA, Travers RS. Worldwide abundance and distribution of
Bacillus thuringiensis isolates. Appl Environ Microbiol. 1989. 55:2437–2442.
Article
15. Stefanic P, Mandic-Mulec I. Social interactions and distribution of
Bacillus subtilis pherotypes at microscale. J Bacteriol. 2009. 191:1756–1764.
Article
16. Lee SJ, Lee YW, Chung J, Lee JK, Lee JY, Jahng D, et al. Reuse of low concentrated electronic wastewater using selected microbe immobilised cell system. Water Sci Technol. 2008. 57:1191–1197.
Article
17. Salkinoja-Salonen MS, Vuorio R, Andersson MA, Kämpfer P, Andersson MC, Honkanen-Buzalski T, et al. Toxigenic Strains of
Bacillus licheniformis Related to Food Poisoning. Appl Environ Microbiol. 1999. 65:4637–4645.
Article
18. An SY, Asahara M, Goto K, Kasai H, Yokota A.
Virgibacillus halophilus sp. nov., spore-forming bacterial isolated from soil in Japan. Int J Syst Evol Microbiol. 2007. 57:1607–1611.
Article
19. Earl AM, Losick R, Kolter R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 2008. 16:269–275.
20. Dean DH. Biochemical genetics of the bacterial insectcontrol agent
Bacillus thuringiensis: basic principles and prospects for genetic engineering. Biotechnol Genet Eng Rev. 1984. 2:341–363.
Article
21. Moreira C, Rainey FA, Nobre MF, da Silva MT, da Costa MS.
Tepidimonas ignava gen nov, sp nov, a new chemolithoheterotrophic and slightly thermophilic member of the beta-Proteobacteria. Int J Syst Evol Microbiol. 2000. 50:735–742.
Article
22. Mountain BW, Benning LG, Boerema JA. Experimental studies on New Zealand hot spring sinters: rates of growth and textural development. Can J Earth Sci. 2003. 40:1643–1667.
Article
23. Kämpfer P, Falsen E, Busse HJ. Reclassification of Pseudomonas mephitica claydon and hammer 1939 as a later heterotypic synonym of Janthinobacterium lividum (Eisenberg 1891) De Ley et al. 1978. Int J Syst Evol Microbiol. 2008. 58:136–138.
24. Stead DE. Grouping of plant-pathogenic and some other
Pseudomonas spp. by using cellular fatty acid profiles. IJSEM. 1992. 42:281–295.
Article
25. Chen MY, Tsay SS, Chen KY, Shi YC, Lin YT, Lin GH.
Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N
2O-producing species isolated from hot springs. Int J Syst Evol Microbiol. 2002. 52:2155–2161.
Article
26. Palleroni NJ, Bradbury JF.
Stenotrophomonas, a new bacterial genus for
Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol. 1993. 43:606–609.
Article
27. Yokoya F, York GK. Effect of several environmental conditions on the "thermal death rate" of endospores of aerobic, thermophilic bacteria. Appl Microbiol. 1965. 13:993–999.
Article
28. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of
Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000. 64:548–572.
Article
29. Lowe SE, Jain MK, Zeikus JG. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev. 1993. 57:451–509.
Article
30. Heinen W. Growth conditions and temperature dependent substrate specificity of two extremely thermophilic bacteria. Arch Mikrobiol. 1971. 76:2–17.
Article
31. Vogt R, Larue D, Parry MF, Brokopp CD, Klaucke D, Allen J.
Pseudomonas aeruginosa skin infections in persons using a whirlpool in Vermont. J Clin Microbiol. 1982. 15:571–574.
Article